Introduction: Objective: To assess the antioxidant property of 10% amla extract in reversing the compromised bond strength and to assess the antioxidant property of 10% amla extract and Elsenz on the color stability of power bleached teeth.

Materials And Methods: Ninty extracted single-rooted maxillary anterior were collected and divided as follows: The labial surfaces of 30 samples were subjected to power bleaching after which the samples were divided into three groups- Group I (control), Group II (antioxidant amla), and Group III (Elsenz) with = 10 in each which were then stained with a coffee solution for 10 mins. The color difference was recorded with a colorimeter at baseline, after bleaching, after 7, and after 15 days of staining. sixty specimens were randomly divided into six groups ( = 10) as following: Group I (immediate bonding); Group II (bleaching + immediate bonding); Group III (bleaching + antioxidant and immediate bonding); Group IV (bleaching + 1 week storage + antioxidant + bonding); Group V (bleaching + 2 week storage + antioxidant + bonding); Group VI (bleaching + 2 week storage + bonding). All the specimens were tested for shear bond strength in universal testing machine. Statistical analysis was performed using ANOVA and Scheffe's test.

Results: Significantly higher staining was observed in Group II (amla) and least with Elsenz pasteThe highest mean shear bond strength was found in Group I followed by Group V.

Conclusion: Elsenz showed the least staining followed by artificial saliva. 10% Amla extract neither was effective in preventing staining of power bleached enamel nor in restoring the poor bond strength of power bleached enamel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686938PMC
http://dx.doi.org/10.4103/jpbs.jpbs_307_21DOI Listing

Publication Analysis

Top Keywords

bond strength
20
bonding group
20
power bleached
16
group bleaching
16
antioxidant property
12
10% amla
12
amla extract
12
group
12
antioxidant bonding
12
bleaching week
12

Similar Publications

Pnictogen Bond-Mediated Coassemblies for Noncovalent Molecular Glass.

Nano Lett

January 2025

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Pnictogen bond (PnB) occurring on the group-15 elements is recognized as σ- or π-hole-based interaction that has garnered attention in the fields of anion recognition and organocatalysis. Due to the polyvalent feature of pnictogens and high directionality, PnB possesses potential in the design of convergent coassembled materials with acceptors containing lone pair electrons or anions, which however is rarely explored so far. Herein, we unveil the role of antimony (Sb)-based PnB donors in producing self-assembled chiroptical materials with lone pair electron containing acceptors.

View Article and Find Full Text PDF

Unprecedented carbonic anhydrase inhibition mechanism: Targeting histidine 64 side chain through a halogen bond.

Arch Pharm (Weinheim)

January 2025

Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.

2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.

View Article and Find Full Text PDF

Elastic, strong and tough ionically conductive elastomers.

Nat Commun

January 2025

Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France.

Stretchable elastic materials with high strength, toughness, and good ionic conductivity are highly desirable for wearable devices and stretchable batteries. Unfortunately, limited success has been reported to attain all of these properties simultaneously. Here, we report a family of ionically conductive elastomers (ICEs) without compromise between mechanical properties (high stiffness, reversible elasticity, fracture resistance) and ionic conductivity, by introducing a multiple network elastomer (MNE) architecture into a low polymer.

View Article and Find Full Text PDF

Optimizing bond strength: Insights into resin-based restorative materials and calcium silicate cement interactions.

Eur J Oral Sci

January 2025

Department of Basic Sciences, Biomedical Stomatology Research Group, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, Colombia.

View Article and Find Full Text PDF

Under current minimally invasive treatment regimes, minor tooth preparation and thinner biomimetic ceramic restoration are used to preserve the restored tooth's vitality, aesthetics, and function. New computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic-like material are now available. To guarantee longevity, a dental clinician must know these newly launched product's mechanical strength compared to the relatively brittle glass-matrix ceramic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!