The production of cellulose nanofibers promotes the utilization of plant residues that are generated in agro-industries during food processing. The utilization of these plant by-products reduces environmental contamination. Cellulose nanofibers are used in several sectors, including the drug, food, and animal nutrition industries. Many sources of nanofibers used in animal diets can be used as potential fiber substitutes after being processed to improve efficiency. For instance, including nanometric particles of plant fibers (<100 nm) in animal feed may provide excellent physical properties such as high reactivity, a large surface area, and improved nutrient absorption from the diet. Nanotechnology improves the characteristics of fibers that are important for gastrointestinal transit and their utilization as energy sources and substrates for microbial fermentation in the digestive tract of animals. Nanofibers can improve the synthesis of volatile fatty acids and the blood lipid profile, with positive effects on the intestinal health of animals. Moreover, and studies have demonstrated promising effects in reducing blood glucose levels without toxic effects on the body. Supplying nanofibers in the diet improve animal performance, increase productivity, and work toward a more sustainable economic development of agribusinesses. The quality of animal products such as meat, milk, and eggs is also reported to be improved with the inclusion of nanominerals in the feed. Overall, the application of nanotechnology to harness the by-products of agro-industries can increase economic viability and sustainability in animal production systems. Therefore, this review presents a current survey on the main research and advances in the utilization of nanotechnology, focusing on cellulose nanofibers in animal feed to improve animal performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743779 | PMC |
http://dx.doi.org/10.14202/vetworld.2021.2843-2850 | DOI Listing |
J Biomed Mater Res B Appl Biomater
January 2025
Department of Biomedical Engineering, TOBB Economy and Technology University, Ankara, Türkiye.
Despite the variety of proposed solutions, anastomotic leakage is still a critical complication after colorectal surgery, which causes increased clinical mortality and morbidity. By enhancing microcirculation in the colonic mucosa, the use of Iloprost (Ilo) has shown promising results for the healing of anastomosis. The purpose of this study is to examine the performance of Ilo-impregnated Polycaprolactone:Gelatin electrospun membranes (PCL/Gel/Ilo) on anastomosis repair and intra-abdominal adhesion behavior in the Rat colon.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
Most of the developed flexible hydrogel supercapacitors struggle to maintain their electrochemical stability and structural integrity under tensile strain. Therefore, developing a flexible supercapacitor with excellent mechanical properties and stable electrochemical performance under different strains remains a challenge. Based on the previous cartilage-like structure, we designed a new coarse nanofiber bundle and ordered network.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.
Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.
Drug Deliv
December 2025
University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary.
Drug-loaded liposomes incorporated in nanofibrous scaffolds is a promising approach as a multi-unit nanoscale system, which combines the merits of both liposomes and nanofibers (NFs), eliminating the drawback of liposomes' poor stability on the one hand and offering a higher potential of controlled drug release and enhanced therapeutic efficacy on the other hand. The current systematic review, which underwent a rigorous search process in PubMed, Web of Science, Scopus, Embase, and Central (Cochrane) employing (Liposome AND nanofib* AND electrosp*) as search keywords, aims to present the recent studies on using this synergic system for different therapeutic applications. The search was restricted to original, peer-reviewed studies published in English between 2014 and 2024.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
NHC Key Laboratory for Critical Care Medicine, School of Medicine, Tianjin First Central Hospital, Research Institute of Transplant Medicine, Organ Transplant Center, Nankai University, Tianjin, 300071, China.
Islet transplantation is a promising therapy for diabetes, yet the limited survival and functionality of transplanted islet grafts hinder optimal outcomes. Glucagon-like peptide-1 (GLP-1), an endogenous hormone, has shown potential to enhance islet survival and function; however, its systemic administration can result in poor localization and undesirable side effects. To address these challenges, we developed a novel peptide-based nanofiber hydrogel incorporating GLP-1 functionality for localized delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!