Semiconductor lasers with extremely low threshold power require a combination of small volume active region with high-quality-factor cavities. For ridge lasers with highly reflective coatings, an ultra-low threshold demands significantly suppressing the diffraction loss at the facets of the laser. Here, we demonstrate that introducing a subwavelength aperture in the metallic highly reflective coating of a laser can correct the phase front, thereby counter-intuitively enhancing both its modal reflectivity and transmissivity at the same time. Theoretical and experimental results manifest a decreasing in the mirror loss by over 40% and an increasing in the transmissivity by 10. Implementing this method on a small-cavity quantum cascade laser, room-temperature continuous-wave lasing operation at 4.5 μm wavelength with an electrical consumption power of only 143 mW is achieved. Our work suggests possibilities for future portable applications and can be implemented in a broad range of optoelectronic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752788PMC
http://dx.doi.org/10.1038/s41467-021-27927-9DOI Listing

Publication Analysis

Top Keywords

ultra-low threshold
8
phase front
8
highly reflective
8
threshold lasing
4
lasing phase
4
front engineering
4
engineering metallic
4
metallic circular
4
circular aperture
4
aperture semiconductor
4

Similar Publications

Penguin feather-inspired flexible aerogel composite films featuring ultra-low thermal conductivity and dielectric constant.

Mater Horiz

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.

Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.

View Article and Find Full Text PDF

Energy-Efficient Dynamic Enhanced Inter-Cell Interference Coordination Scheme Based on Deep Reinforcement Learning in H-CRAN.

Sensors (Basel)

December 2024

College of AI/SW Convergence, Kyungnam University, 7 Gyeongnamdaehak-ro, Masanhappo-gu, Changwon 51767, Republic of Korea.

The proliferation of 5G networks has revolutionized wireless communication by delivering enhanced speeds, ultra-low latency, and widespread connectivity. However, in heterogeneous cloud radio access networks (H-CRAN), efficiently managing inter-cell interference while ensuring energy conservation remains a critical challenge. This paper presents a novel energy-efficient, dynamic enhanced inter-cell interference coordination (eICIC) scheme based on deep reinforcement learning (DRL).

View Article and Find Full Text PDF

Spiking Neural Networks (SNNs) are at the forefront of computational neuroscience, emulating the nuanced dynamics of biological systems. In the realm of SNN training methods, the conversion from ANNs to SNNs has generated significant interest due to its potential for creating energy-efficient and biologically plausible models. However, existing conversion methods often require long time-steps to ensure that the converted SNNs achieve performance comparable to the original ANNs.

View Article and Find Full Text PDF

Structure-Induced Energetic Coordination Compounds as Additives for Laser Initiation Primary Explosives.

Adv Mater

December 2024

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

Laser ignition of primary explosives presents more reliable alternative to traditional electrical initiation methods. However, the commercial initiator lead azide (LA) requires a high-power density laser to detonate, with the minimum laser initiation energy (E) of 2402 mJ. Currently, the laser-ignitable metal complex-based igniters still suffer from weak detonation capabilities and high E values.

View Article and Find Full Text PDF

Revolutionizing X-ray Imaging: A Leap toward Ultra-Low-Dose Detection with a Cascade-Engineered Approach.

ACS Cent Sci

November 2024

Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

X-ray detection technology is essential in various fields, including medical imaging and security checks. However, exposure to large doses of X-rays poses considerable health risks. Therefore, it is crucial to reduce the radiation dosage without compromising detection efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!