Spontaneous C-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C symmetry is restored. A leading approach is based on time-dependent Ginzburg-Landau theory, which explains the coherence response seen in many systems. However, we show that, for the case of the single layered manganite LaSrMnO the theory fails. Instead, we find an ultrafast inhomogeneous disordering transition in which the mean-field order parameter no longer reflects the atomic-scale state of the system. Our results suggest that disorder may be common to light-induced phase transitions, and methods beyond the mean-field are necessary for understanding and manipulating photoinduced phases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752725 | PMC |
http://dx.doi.org/10.1038/s41467-021-27819-y | DOI Listing |
Chronobiol Int
December 2024
Habilitation studio "The Little Prince", Municipal autonomous institution of additional education, "Children and Youth Center of the Frunzensky district of Saratov", Saratov, Russia.
The purpose of this study was to investigate the sleep characteristics, circadian rhythms, behavior, and postnatal development of children with and without language difficulties (LDs) and the association of these variables with melatonin-containing food (FMT) consumption. The study involved parents who anonymously and voluntarily provided their children's personal data and assessed LDs, bedtime, meal timing, behavioral problems, gross motor skill development, and FMT consumption. Multiple regression analysis was used to analyze the associations between study variables.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Departamento de Química Física y Química Inorgánica, Facultad de Ciencias─I.U. CINQUIMA, Paseo de Belén, 7, 47011 Valladolid, Spain.
The conformational space of 3-chloropropionic acid has been studied under the isolated conditions of a supersonic expansion using Stark-modulated free-jet absorption millimeter-wave and centimeter-wave chirped-pulse Fourier transform microwave spectroscopy techniques. The rotational spectra originating from the three most stable conformers including Cl and Cl isotopologues were observed in both experiments using helium expansion while a partial conformational relaxation involving skeletal rearrangements takes place in an argon expansion. The rotational parameters, geometries, and energy order were determined from the experiment, allowing a comparison with quantum chemical predictions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Nankai University, Colege of Chemistry, CHINA.
Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit.
View Article and Find Full Text PDFJ Clin Periodontol
December 2024
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
Background: Artificial intelligence (AI) has the potential to enhance healthcare practices, including periodontology, by improving diagnostics, treatment planning and patient care. This study introduces 'PerioGPT', a specialized AI model designed to provide up-to-date periodontal knowledge using GPT-4o and a novel retrieval-augmented generation (RAG) system.
Methods: PerioGPT was evaluated in two phases.
Biotechnol Bioeng
December 2024
Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
Virus-like particles (VLPs) are a versatile technology for the targeted delivery of genetic material through packaging and potential surface modifications for directed delivery or immunological issues. Although VLP production is relatively simple as they can be recombinantly produced using microorganisms such as Escherichia coli, their current downstream processing often relies on individually developed purification strategies. Integrating size-selective separation techniques may allow standardized platform processing across VLP purification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!