Rieske oxygenases exploit the reactivity of iron to perform chemically challenging C-H bond functionalization reactions. Thus far, only a handful of Rieske oxygenases have been structurally characterized and remarkably little information exists regarding how these enzymes use a common architecture and set of metallocenters to facilitate a diverse range of reactions. Herein, we detail how two Rieske oxygenases SxtT and GxtA use different protein regions to influence the site-selectivity of their catalyzed monohydroxylation reactions. We present high resolution crystal structures of SxtT and GxtA with the native β-saxitoxinol and saxitoxin substrates bound in addition to a Xenon-pressurized structure of GxtA that reveals the location of a substrate access tunnel to the active site. Ultimately, this structural information allowed for the identification of six residues distributed between three regions of SxtT that together control the selectivity of the C-H hydroxylation event. Substitution of these residues produces a SxtT variant that is fully adapted to exhibit the non-native site-selectivity and substrate scope of GxtA. Importantly, we also found that these selectivity regions are conserved in other structurally characterized Rieske oxygenases, providing a framework for predictively repurposing and manipulating Rieske oxygenases as biocatalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752792 | PMC |
http://dx.doi.org/10.1038/s41467-021-27822-3 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
Tambjamines are complex bipyrrole-containing natural products that possess promising bioactive properties. Although is known to produce both cyclic tambjamine MYP1 and the linear precursor (YP1), the biosynthetic machinery used to catalyze the site-selective oxidative carbocyclization at the unactivated 1° carbon of YP1 has remained unclear. Here, we demonstrate that a three-component Rieske system consisting of an oxygenase (TamC) and two redox partner proteins is responsible for this unprecedented activity on YP1 and potentially, a non-native substrate (BE-18591).
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
Dioxygen (O) activation by iron-containing enzymes and biomimetic compounds generates iron-oxygen intermediates, such as iron-superoxo, -peroxo, -hydroperoxo, and -oxo, that mediate oxidative reactions in biological and abiological systems. Among the iron-oxygen intermediates, iron(III)-peroxo species are less frequently implicated as active intermediates in oxidation reactions. In this study, we present the combined experimental and theoretical investigations on -dihydroxylation reactions mediated by synthetic mononuclear nonheme iron-peroxo intermediates, demonstrating the importance of supporting ligands and metal centers in activating the peroxo ligand toward the O-O bond homolysis for the -dihydroxylation reactions.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.
Sulfonamides are frequently detected with high concentrations in various environments and was regarded as a serious environmental risk by fostering the dissemination of antibiotic resistance genes. This study for the first time reported a strain SNF1 affiliated with Hydrogenophaga can efficiently degrade sulfamethoxazole (SMX). Strain SNF1 prefers growing under extra carbon sources and neutral condition, and could degrade 500 mg/L SMX completely within 16 h.
View Article and Find Full Text PDFACS Catal
September 2024
Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
High-valent oxoiron species have been invoked as oxidizing agents in a variety of iron-dependent oxygenases. Taking inspiration from nature, selected nonheme iron complexes have been developed as catalysts to elicit C-H oxidation through the mediation of putative oxoiron(V) species, akin to those proposed for Rieske oxygenases. The addition of carboxylic acids in these iron-catalyzed C-H oxidations has proved highly beneficial in terms of product yields and selectivities, suggesting the direct involvement of iron(V)-oxo-carboxylato species.
View Article and Find Full Text PDFMethods Enzymol
September 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India. Electronic address:
Non-heme iron oxygenases constitute a versatile enzyme family that is crucial for incorporating molecular oxygen into diverse biomolecules. Despite their importance, only a limited number of these enzymes have been structurally and functionally characterized. Surprisingly, there remains a significant gap in understanding how these enzymes utilize a typical architecture and reaction mechanism to catalyze a wide range of reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!