An ultrafast and facile nondestructive strategy to convert various inefficient commercial nanocarbons to highly active Fenton-like catalysts.

Proc Natl Acad Sci U S A

Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China;

Published: January 2022

The Fenton-like process catalyzed by metal-free materials presents one of the most promising strategies to deal with the ever-growing environmental pollution. However, to develop improved catalysts with adequate activity, complicated preparation/modification processes and harsh conditions are always needed. Herein, we proposed an ultrafast and facile strategy to convert various inefficient commercial nanocarbons into highly active catalysts by noncovalent functionalization with polyethylenimine (PEI). The modified catalysts could be in situ fabricated by direct addition of PEI aqueous solution into the nanocarbon suspensions within 30 s and without any tedious treatment. The unexpectedly high catalytic activity is even superior to that of the single-atom catalyst and could reach as high as 400 times higher than the pristine carbon material. Theoretical and experimental results reveal that PEI creates net negative charge via intermolecular charge transfer, rendering the catalyst higher persulfate activation efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8784125PMC
http://dx.doi.org/10.1073/pnas.2114138119DOI Listing

Publication Analysis

Top Keywords

ultrafast facile
8
strategy convert
8
convert inefficient
8
inefficient commercial
8
commercial nanocarbons
8
nanocarbons highly
8
highly active
8
facile nondestructive
4
nondestructive strategy
4
active fenton-like
4

Similar Publications

The advancement of rapid-response grid energy storage systems and the widespread adoption of electric vehicles are significantly hindered by the charging times and energy densities associated with current lithium-ion battery technology. In state-of-the-art lithium-ion batteries, graphite is employed as the standard negative electrode material. However, graphite suffers from polarization and deteriorating side-reactions at the high currents needed for fast charging.

View Article and Find Full Text PDF

Molecular diagnosis limitations, including complex treatment processes, low cost-effectiveness, and operator-dependent low reproducibility, interrupt the timely prevention of disease spread and the development of medical devices for home and outdoor uses. A newly fabricated gold nanopillar array-based film is presented for superior photothermal energy conversion. Magnifying the metal film surface-to-volume ratio increases the photothermal energy conversion efficiency, resulting in a swift reduction in the gene amplification reaction time.

View Article and Find Full Text PDF

Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent.

View Article and Find Full Text PDF

Hybridization of carbon nanotubes (CNTs) and manganese dioxide (MnO) integrates the biocompatibility and outstanding electrocatalytic activity of MnO with the exceptional conductivity of CNTs, thus providing a superior synergistic sensing platform for the detection of biomolecules. However, the existing methods for synthesizing MnO/CNT hybrids are complex and inefficient, resulting in low yields and limited surface functionalities. Hence, in this study, we present a low-cost and ultrafast solid-phase synthesis of the MnO/CNT hybrid using a facile microwave technique to detect a crucial biomolecule bilirubin.

View Article and Find Full Text PDF

Lanthanoid Sesquioxide Ultrafine Nanoparticles on Graphene via General Approach of Ultrafast Redox Reaction and Their Performance as Anodes in Lithium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 42, 71-065 Szczecin, Poland.

Herein, we propose a general route of obtaining reduced graphene oxide and metal oxide nanocomposite, demonstrated by cerium, dysprosium, and neodymium sesquioxides, via ultrafast redox reaction (URR). This method utilizes a very fast heating of graphene oxide and a metal salt without any chemical solvents or special reactors. Off the scene tests showed that different ratios of graphene oxide to metal salt change the metal oxide particle size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!