Integration of a photobioreactor for WWT by microalgae is calculated as a future alternative for cost-efficient and environmentally-friendly nutrient removal for municipal WWTPs. High growth rates and higher biogas yields (compared to conventional sewage sludge) of algal biomass can significantly improve WWTP energy balances. This study focuses on temperate climate zones with changing seasons and discusses energy potential of microalgae-enhanced wastewater treatment for an existing WWTP (32,000 PE) in Central Germany. For WWTP-dimensioning and determination of energy-rich biomasses for anaerobic digestion and CHP, actual influent load data was used and calculation was carried out according to valid regulations. Algae growth figures are based on pilot-scale test series from Germany and correspond to the relevant climatic and local process conditions. Computed results show a shift in the energy balance from a current energy demand of 662,173kWh a to an energy production of approx. 1,9MWh a and 1 MWh a.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2022.126695 | DOI Listing |
Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
October 2024
Department of Environmental Biotechnology, Biotechnology Research Center, Al-Nahrain University, 10018 Baghdad, Iraq.
Background: Contamination with crude oil and hydrocarbons has become a global threat. Such threats have urged us to invent solutions to deal with this dilemma. However, chemical treatment comes with limited benefits.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
November 2024
Food Science Department, Agriculture College, Basrah University, 61001 Basrah, Iraq.
Background: Flavonoids are among the most important compounds found in plants, since laboratory studies have shown them to be a daily requirement in human diets due to their various health benefits. Therefore, this study focused on extracting, purifying, and measuring the antioxidant activity of the flavonoid quercetin, which is widely found in plants and possesses a variety of biological activities, from different plant sources.
Methods: The extraction of quercetin was performed using several methods (chemical, physical, and enzymatic) and several extraction solutions (water, ethanol, and chloroform) from several plants (spinach, dill, Onion Skin, , sumac, digalkhasab chemri, and leelwi chemri).
J Environ Health Sci Eng
June 2025
Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707 USA.
Unlabelled: Metformin, a widely used antidiabetic drug, has become a growing concern due to its persistence in the environment. It is one of the most frequently detected pharmaceuticals in wastewater and surface water because it is excreted largely unchanged by patients and is not fully removed in conventional wastewater treatment plants. The present study focuses on the synthesis and characterization of BaFeO/poly(1-naphthylamine) (PNA) nanohybrids and their application as microwave-active catalysts for the degradation of metformin.
View Article and Find Full Text PDFFront Public Health
December 2024
Wastewater Technology Research, Wastewater Disposal, German Environment Agency, Berlin, Germany.
Introduction: Accurate and consistent data play a critical role in enabling health officials to make informed decisions regarding emerging trends in SARS-CoV-2 infections. Alongside traditional indicators such as the 7-day-incidence rate, wastewater-based epidemiology can provide valuable insights into SARS-CoV-2 concentration changes. However, the wastewater compositions and wastewater systems are rather complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!