Integration of a photobioreactor for WWT by microalgae is calculated as a future alternative for cost-efficient and environmentally-friendly nutrient removal for municipal WWTPs. High growth rates and higher biogas yields (compared to conventional sewage sludge) of algal biomass can significantly improve WWTP energy balances. This study focuses on temperate climate zones with changing seasons and discusses energy potential of microalgae-enhanced wastewater treatment for an existing WWTP (32,000 PE) in Central Germany. For WWTP-dimensioning and determination of energy-rich biomasses for anaerobic digestion and CHP, actual influent load data was used and calculation was carried out according to valid regulations. Algae growth figures are based on pilot-scale test series from Germany and correspond to the relevant climatic and local process conditions. Computed results show a shift in the energy balance from a current energy demand of 662,173kWh a to an energy production of approx. 1,9MWh a and 1 MWh a.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.126695DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
energy balance
8
energy
6
potential impact
4
impact implementation
4
implementation microalgae-based
4
microalgae-based wastewater
4
treatment energy
4
balance municipal
4
municipal wastewater
4

Similar Publications

Development of a capsid protein-based ELISA for the detection of PCV2 antibodies in swine serum.

Pol J Vet Sci

December 2024

Key Laboratory of Animal Pathogen and Biosafety Education of the Ministry of Education, Zhengzhou 450000, China.

Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure.

View Article and Find Full Text PDF

Background: Contamination with crude oil and hydrocarbons has become a global threat. Such threats have urged us to invent solutions to deal with this dilemma. However, chemical treatment comes with limited benefits.

View Article and Find Full Text PDF

Background: Flavonoids are among the most important compounds found in plants, since laboratory studies have shown them to be a daily requirement in human diets due to their various health benefits. Therefore, this study focused on extracting, purifying, and measuring the antioxidant activity of the flavonoid quercetin, which is widely found in plants and possesses a variety of biological activities, from different plant sources.

Methods: The extraction of quercetin was performed using several methods (chemical, physical, and enzymatic) and several extraction solutions (water, ethanol, and chloroform) from several plants (spinach, dill, Onion Skin, , sumac, digalkhasab chemri, and leelwi chemri).

View Article and Find Full Text PDF

Unlabelled: Metformin, a widely used antidiabetic drug, has become a growing concern due to its persistence in the environment. It is one of the most frequently detected pharmaceuticals in wastewater and surface water because it is excreted largely unchanged by patients and is not fully removed in conventional wastewater treatment plants. The present study focuses on the synthesis and characterization of BaFeO/poly(1-naphthylamine) (PNA) nanohybrids and their application as microwave-active catalysts for the degradation of metformin.

View Article and Find Full Text PDF

Introduction: Accurate and consistent data play a critical role in enabling health officials to make informed decisions regarding emerging trends in SARS-CoV-2 infections. Alongside traditional indicators such as the 7-day-incidence rate, wastewater-based epidemiology can provide valuable insights into SARS-CoV-2 concentration changes. However, the wastewater compositions and wastewater systems are rather complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!