Globally, microplastics pollution has become a serious environmental threat due to their multitude sources, widespread occurrence, persistence, and adverse effects to ecosystem and the human health. Addressing this multifaceted threat requires innovative technologies that can efficiently remove microplastics from the environment. In this review, we first overviewed the source, occurrence, and potential adverse impacts of microplastics to human health. We then identified promising technologies for microplastics removal, including physical, chemical, and biological approaches. A detailed analysis of the advantages and limitations of different techniques was provided. We concluded this review with the current challenges and future research priorities, which will guide us through the path addressing microplastics contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.133557 | DOI Listing |
Membranes (Basel)
January 2025
Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
The rapid expansion of the cosmetics industry has significantly increased the adoption of alternative microplastics in response to increasingly stringent global environmental regulations. This study presents a comparative analysis of the treatment performance of silica powder and cornstarch-common alternatives for microplastics in cosmetics-using ceramic membrane filtration combined with flow imaging microscopy (FlowCam) to analyze particle behavior. Bench-scale crossflow filtration experiments were performed with commercially available alumina ceramic membranes.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Wastewater treatment plants (WWTPs) are significant sources of microplastic (MP) emissions. In order to quantify the potential MP emission from WWTPs, a database of more than 10,000 WWTPs in China with an estimated MP emission rate was built. The MP riverine retention after emission was also estimated based on Stokes' law for both fragments and fibers.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Civil Engineering and Architecture, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, Shandong Province, PR China. Electronic address:
Membrane bioreactors (MBRs) can effectively remove microplastics (MPs) because of their good rejection performance. However, the influence of MP concentration and particle size on the short-term and long-term operation efficiency of MBRs remains unclear. To address this issue, this study investigated the effects of short-term stress and long-term accumulation of polypropylene microplastics (PP-MPs) with different particle sizes on the operational efficiency of MBRs by running three MBR systems at four concentration stages.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
The co-occurrence of microplastics (MPs) and nanoplastics (NPs) with polychlorinated biphenyls (PCBs) is an emerging environmental concern. Wetland plants, with their unique anaerobic-aerobic environments, offer a promising approach for PCB removal. However, the impact of MPs and NPs on PCBs dynamics in constructed wetlands is not well understood.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India. Electronic address:
Persistent microplastics (MPs) accumulation in the aqueous environments is considered a threat to the ecosystem, potentially harming aquatic species and human health. In view of the escalating problem of MPs pollution in India, a comprehensive investigation of MPs accumulation in major riverine systems is necessary. The current study aims to estimate MPs abundance in surface water, sediment, and fish samples along the entire stretch of Godavari, the largest river in peninsular India.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!