Objective: To investigate the differential expression profile of lncRNAs in the nonalcoholic fatty liver disease (NAFLD) model induced by oleic acid (OA) and to further explore the role of LINC01260 (ENST00000255183) in NAFLD, providing theoretical support for the clinical value of lncRNAs in NAFLD.
Methods: OA (50 μg/mL) was used to induce steatosis in normal human LO2 hepatocytes for 48 h and was verified by Oil red O staining. Differential expression profiles of lncRNAs were obtained by eukaryotic circular sequencing (RNA/lncRNA/circRNA-seq) techniques. A gain-of-function (GOF) strategy for LINC01260 was adopted, Oil red O staining and semiquantitative analysis were combined to explore whether the GOF of LINC01260 affects LO2 cell steatosis. CeRNA-based bioinformatics analysis of lncRNAs was performed, and the enriched mRNAs were further verified. RXRB siRNAs were applied and verify its role in LINC01260 regulated OA-induced hepatocytes steatosis.
Results: Lipid droplets of different sizes were observed in the cells of the OA group. Absorbance in the OA group was significantly increased after isopropanol decolorization (P < 0.05). Compared with those in the control group, there were 648 lncRNAs with differential expression greater than 1 time in the OA group, of which 351 were upregulated and 297 were downregulated. Fluorescence quantitative PCR showed that the expression of LINC01260 in the OA group was downregulated by 0.35 ± 0.07-fold (P < 0.05). The formation of lipid droplets in LO2 cells of the LINC01260 GOF group decreased significantly (P < 0.05). CeRNA analysis indicated that the mRNA levels of RXRB, RNPEPL1, CD82, MADD and KLC2 were changed to different degrees. Overexpression of LINC01260 significantly induced RXRB transcription (P < 0.05) and translation, and RXRB silence attenuated the lipids decrease induced by LINC01260 overexpression.
Conclusion: The OA-induced NAFLD cell model has a wide range of lncRNA differential expression profiles. LINC01260 participates in the regulation of the lipid droplet formation process of NAFLD, and its overexpression can significantly inhibit the steatosis process of LO2 cells. Mechanistically, LINC01260 may act as a ceRNA to regulate the expression of RXRB, thereby affecting the adipocytokine signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753873 | PMC |
http://dx.doi.org/10.1186/s12986-021-00634-4 | DOI Listing |
J Gastroenterol Hepatol
January 2025
Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India.
Background: Resmetirom, the first FDA-approved drug for nonalcoholic steatohepatitis (NASH) with fibrosis in obese patients, when combined with lifestyle modifications, improves NASH resolution and reduces fibrosis by at least one stage. Low thyroid hormone (T) levels are linked to a higher risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Epidemiological studies have confirmed the positive correlation between hypothyroidism and MASLD.
View Article and Find Full Text PDFJ Diabetes Metab Disord
June 2025
Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background And Aim: A healthy diet has been recommended for non-alcoholic fatty liver disease (NAFLD). We aim to investigate the associations of diet quality indices with the risk of developingmetabolic-associated fatty liver disease (MAFLD).
Methods: We conducted this nested case-control study by recruiting 968 cases with MAFLD and 964 controls from the participants of the baseline phase of the Sabzevar Persian Cohort Study (SPCS).
Exp Cell Res
January 2025
Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan province, China; Department of Gastroenterology, Ningyuan County People's Hospital, Yongzhou City, 425600, Hunan province, China. Electronic address:
Nonalcoholic fatty liver disease (NAFLD) is a common chronic disease characterized by hepatocyte steatosis, which excludes alcohol, drugs and other definite liver damage-related factors. It has been reported that OTUB1 serves a significant role in the regulation of glucose and lipid metabolism. The present study aimed to investigate the molecular mechanism underlying the effect of OTUB1 on regulating NAFLD.
View Article and Find Full Text PDFBioorg Chem
January 2025
State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of Chinese Academy of Sciences, Beijing 100049 China. Electronic address:
Non-alcoholic fatty liver disease (NAFLD), also known as metabolic dysfunction- associated with fatty liver disease (MAFLD), is one of the most prevalent chronic liver diseases globally. NAFLD is characterized by the accumulation of liver fat unrelated to excessive alcohol consumption. Non-alcoholic steatohepatitis (NASH) is the disease progression of NAFLD and could develop into cirrhosis and hepatocellular carcinoma.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland. Electronic address:
Sterile inflammation contributes to the development of many liver diseases including non-alcoholic fatty liver disease. Tumor necrosis factor alpha (TNFα) is a key cytokine driving liver inflammation primarily through pro-inflammatory activation of liver sinusoidal endothelial cells (LSEC). The knowledge of whether modulating LSEC activation can alleviate liver inflammation is scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!