Aminoacyl-tRNA Synthetases, Indispensable Players in Lung Tumorigenesis.

Protein Pept Lett

Department of Biotechnology, Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, Faculty of Science, University of Calcutta, Kolkata, India.

Published: May 2022

Being an essential enzyme in protein synthesis, the aminoacyl-tRNA synthetases (aaRSs) have a conserved function throughout evolution. However, research has uncovered altered expressions as well as interactions of aaRSs, in league with aaRS-interacting multi-functional proteins (AIMPs), forming a multi-tRNA synthetase complex (MSC) and divulging into their roles outside the range of protein synthesis. In this review, we have directed our focus into the rudimentary structure of this compact association and also how these aaRSs and AIMPs are involved in the maintenance and progression of lung cancer, the principal cause of most cancer-related deaths. There is substantial validation that suggests the crucial role of these prime housekeeping proteins in lung cancer regulation. Here, we have addressed the biological role that the three AIMPs and the aaRSs play in tumorigenesis, along with an outline of the different molecular mechanisms involved in the same. In conclusion, we have introduced the potentiality of these components as possible therapeutics for the evolution of new-age treatments of lung tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929866529666220110143520DOI Listing

Publication Analysis

Top Keywords

aminoacyl-trna synthetases
8
lung tumorigenesis
8
protein synthesis
8
lung cancer
8
synthetases indispensable
4
indispensable players
4
lung
4
players lung
4
tumorigenesis essential
4
essential enzyme
4

Similar Publications

In addition to the 20 canonical amino acids encoded in the genetic code, there are two non-canonical ones: selenocysteine and pyrrolysine. The discovery of pyrrolysine synthetases (PylRSs) was a key event in the field of genetic code expansion research. The importance of this discovery is mainly due to the fact that the translation systems involving PylRS, pyrrolysine tRNA (tRNA) and pyrrolysine are orthogonal to the endogenous translation systems of organisms that do not use this amino acid in protein synthesis.

View Article and Find Full Text PDF

Clinical Diagnosis and Differential Diagnosis Between CSF1R- and AARS2-Related Leukoencephalopathy.

J Mol Neurosci

January 2025

Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China.

CSF1R-related leukoencephalopathy (CSF1R-L) and AARS2-related leukoencephalopathy (AARS2-L) were two disease entities sharing similar phenotype and even pathological changes. Although clinically, radiologically, and pathologically similar, they were caused by mutation of two different genes. As the rarity of the two diseases, the differential diagnosis of them was difficult.

View Article and Find Full Text PDF

Knocking Down in Colorectal Cancer: Implications for Apoptosis and Cell Cycle Arrest via the p53 Signaling Pathway.

Discov Med

January 2025

Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, 154000 Jiamusi, Heilongjiang, China.

Background: Preventing the progression and recurrence of colorectal cancer (CRC) remains a clinical challenge due to its heterogeneity and drug resistance. This underscores the need to discover new targets and elucidate their cancer-promoting mechanisms. This study analyzed the cancer-promoting mechanisms of tryptophanyl-tRNA synthetase 1 () in CRC.

View Article and Find Full Text PDF

Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in eukaryotes has predominantly relied on the pyrrolysyl-tRNA synthetase/tRNA pair. However, access to additional easily engineered pairs is crucial for expanding the structural diversity of the ncAA toolbox in eukaryotes. The Escherichia coli-derived leucyl-tRNA synthetase (EcLeuRS)/tRNA pair presents a particularly promising alternative.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!