A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Immunological Properties of Protein-Polymer Nanoparticles. | LitMetric

Immunological Properties of Protein-Polymer Nanoparticles.

ACS Appl Bio Mater

Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.

Published: January 2019

The covalent attachment of polymers to the surface of proteins and nanoparticles has been widely employed in the development of biomedical platforms capable of delaying or diminishing immune surveillance. The most widely employed polymer for these applications has been poly(ethylene glycol) (PEG), yet recent evidence has suggested that other polymer architectures and compositions provide significantly better in vitro and in vivo properties of protein-polymer hybrid materials. Moreover, few direct comparisons of PEG to these polymers have been reported. Here we describe the assembly and characterization of a series of polymer conjugates of a representative immunogenic viruslike particle (VLP) using (poly(oligo(ethylene glycol) methacrylate), poly(methacrylamido glucopyranose), and PEG, and an investigation of their ability to shield the protein from antibody recognition as a function of polymer loading density, chain length, architecture, and conjugation site. Increasing chain length and loading density were both found to significantly diminish antibody recognition of the VLP conjugates; the conformation adopted by different polymer architectures was also found to greatly influence antibody recognition. A direct comparison of these conjugates to PEGylated VLPs in vivo showed that all formulations gave rise to similar antibody titers that were significantly diminished relative to unmodified particles. Interestingly, the quality of the antibody response was impacted by the properties of the conjugate, with differences in observed affinity and avidity suggesting a complex dependence on loading density, chain length, and architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.8b00418DOI Listing

Publication Analysis

Top Keywords

antibody recognition
12
loading density
12
chain length
12
properties protein-polymer
8
polymer architectures
8
density chain
8
length architecture
8
polymer
5
antibody
5
immunological properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!