Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effective treatment of malignant melanoma requires an appropriate combination of therapeutic intervention with long-term prognosis as it often survives by monotherapies. Herein, we report a novel melanoma-targeted theranostic nanoenvelope (MTTNe: ISQ@BSA-AuNC@AuNR@DAC@DR5) which has been constructed by assembling a bovine serum albumin (BSA) stabilized gold nanocluster on a gold nanorod (BSA-AuNC@AuNR), a three-in-one theranostic modality, i.e., photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy, tethered with a surface-enhanced Raman scattering (SERS) detection technique. The resultant MTTNe was coloaded with the melanoma-specific FDA approved drug dacarbazine (DAC) and a newly synthesized near-infrared (NIR) absorbing squaraine molecule ISQ that served partly as a photosensitizer and multiplex Raman reporter. Finally, a nanoenvelope was anchored with anti-DR5 monoclonal antibodies as a targeting motif for highly expressed melanoma-specific death receptors in malignant cells. Significant phototherapies of MTTNe were initiated upon an 808 nm single laser trigger which showed a synergistic effect of photothermal hyperthermia as well as singlet oxygen (O) driven photodynamic effect in the presence of ISQ followed by on-demand thermoresponsive drug release in the intracellular milieu. Moreover, a multiplex SERS spectral pattern of ISQ (1345 cm) and DAC (1269 cm) has been utilized for monitoring precise drug release kinetics and target-specific recognition on melanoma cells by Raman imaging. Therapeutic performance of the nanoenvelope was evaluated by cytotoxicity studies in human melanoma cells (A375) and confirmed the apoptotic phenomenon by molecular-level monitoring of intracellular SERS fingerprints. Finally, to address the biocompatibility of MTTNe, subacute toxicity was conducted on BALB/c mice. Hence, the current studies mark a footstep of a facile strategy for the treatment of melanoma by synergistic multimodal photothermal/photodynamic/chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.8b00746 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!