We have constructed a new nanomanipulator (NM) in a field emission scanning electron microscope (FE-SEM) to fabricate carbon nanotube (CNT) tip to precisely adjust the length and attachment angle of CNT onto the mother atomic force microscope (AFM) tip. The new NM is composed of 2 modules, each of which has the degree of freedom of three-dimensional rectilinear motion,andand one-dimensional rotational motion. The NM is mounted on the stage of a FE-SEM. With the system of 14 axes in total which includes 5 axes of FE-SEM and 9 axes of nano-actuators, it was possible to see CNT tip from both rear and side view about the mother tip. With the help of new NM, the attachment angle error could be reduced down to 0° as seen from both the side and the rear view, as well as, the length of the CNT could be adjusted with the precision using electron beam induced etching. For the proper attachment of CNT on the mother tip surface, the side of the mother tip was milled with focused ion beam. In addition, electron beam induced deposition was used to strengthen the adhesion between CNT and the mother tip. In order to check the structural integrity of fabricated CNT, transmission electron microscope image was taken which showed the fine cutting of CNT and the clean surface as well. Finally, the performance of the fabricated CNT tip was demonstrated by imaging 1-D grating and DNA samples with atomic force microscope in tapping mode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac4a2b | DOI Listing |
Membranes (Basel)
December 2024
Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 "James Bourchier" Blvd., 1164 Sofia, Bulgaria.
Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to investigate the processes of penetration and reorganization of PBCA nanoparticles when deposited in a phospholipid monolayer subphase.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Flexible Electronics (Future Technologies), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
Two-dimensional WSe nanosheets have received increasing attention due to their excellent optoelectronic properties. Solid precursors, such as WO and Se powders, have been extensively employed to grow WSe nanosheets by the chemical vapor deposition (CVD) method. However, the high melting point of WO results in heterogeneous nucleation sites and nonuniform growth of the WSe nanosheet.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania.
We elaborate a method for determining the 0D-1D nanostructure size by photoluminescence (PL) emission spectrum dependence on the nanostructure dimensions. As observed, the high number of diamond-like carbon nanocones shows a strongly blue-shifted PL spectrum compared to the bulk material, allowing for the calculation of their top dimensions of 2.0 nm.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Biochemistry and Chemistry, La Trobe University, Bundoora, VIC 3086, Australia.
Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit, even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to the non-specific binding of noise molecules in clinical samples, which complicates its use in complex samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via a simple drop-casting method.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy.
In physiological conditions, red blood cells (RBCs) demonstrate remarkable deformability, allowing them to undergo considerable deformation when passing through the microcirculation. However, this deformability is compromised in Type 1 diabetes mellitus (T1DM) and related pathological conditions. This study aims to investigate the biomechanical properties of RBCs in T1DM patients, focusing on identifying significant mechanical alterations associated with microvascular complications (MCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!