Near-infrared (NIR) emitting BiVO:Yb,Tm nanoparticles are synthesized by a new solvothermal strategy using solvents of oleic acid and methanol. The obtained BiVO:Yb,Tm samples show an average particle size of ≈164 nm and exhibit an asymmetry monoclinic crystal structure of BiVO. At NIR excitation of 980 nm, the BiVO:Yb,Tm sample exhibits a nearly single NIR emission at ≈796 nm with extremely weak blue emissions from Tm ions. These high-energy visible emissions are absorbed by the semiconducting host of BiVO that possesses a bandgap of ≈2.2 eV. Therefore, the NIR excitation to a single intense NIR emission fluorescent BiVO materials could be a potential ideal probe for deep-tissue high-resolution bioimaging. To validate the ability of BiVO materials for bio-applications, we conduct the cytotoxicity experiments. The results show that the cytotoxicity of HeLa cells is negligible at a concentration of 0.2 mg/ml of BiVO:Yb,Tm , and the cell viability approaches 90% at a high dosage of 0.5 mg/ml. The Daphnia magna and Zebrafish treated with nanoparticles (0.5 mg/ml) display bright NIR emission without any background, indicating the excellent in vivo fluorescent imaging capacity of BiVO:Yb,Tm nanoparticles. Our findings offer an environment-friendly strategy to synthesize BiVO UCL nanophosphors and provide a promising new class of fluorescent probes for biological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120811DOI Listing

Publication Analysis

Top Keywords

nir emission
12
vivo fluorescent
8
fluorescent imaging
8
bivoybtm nanoparticles
8
nir excitation
8
bivo materials
8
bivo
6
nir
6
bivoybtm
5
near-infrared-emitting upconverting
4

Similar Publications

The Midas Touch by Iridium: A Second Near-Infrared Aggregation-Induced Emission-Active Metallo-Agent for Exceptional Phototheranostics of Breast Cancer.

J Am Chem Soc

January 2025

Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.

View Article and Find Full Text PDF

A Rapidly Synthesized, Ultrasmall Silver Nanocluster for Near-Infrared-II Imaging and Metabolic Studies.

Nano Lett

January 2025

State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Near-infrared-II (NIR-II) imaging has emerged as a powerful technique for high-resolution visualization of deep anatomical features, benefiting from minimized autofluorescence, diminished optical scattering, and absorption of tissue. However, the current synthesis of NIR-II nanoprobes is a time-consuming, labor-intensive process with low yields, highlighting the need for an efficient and rapid synthesis approach instead. Herein, we report DNA-templated silver nanoclusters (Ag NCs) with NIR-II emission that can be rapidly synthesized via a simple one-spot process within 2 min.

View Article and Find Full Text PDF

Thermal insulating cellulose/wood foam for passive radiant cooling.

Int J Biol Macromol

January 2025

School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China. Electronic address:

Passive cooling permits thermal management of near-zero energy consumption and low CO emissions. Herein, cellulose/wood chip composite foam (CWF) with anisotropic porous structure was prepared via freeze-casting strategy. The CWF displayed an average reflectance of up to 95.

View Article and Find Full Text PDF

Research on multifunctional luminous materials has garnered a lot of interest in the fields of optical sensing, biological imaging, white light-emitting diodes illumination, etc. A novel multifunctional phosphor of Pr-doped BiMoO (BMO: Pr), created via the solid-state method, was investigated in this work. X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectra, and fluorescence decay curves were employed to analyze the produced phosphors.

View Article and Find Full Text PDF

Cysteine-Specific F and NIR Dual Labeling of Peptides via Vinyltetrazine Bioorthogonal Conjugation for Molecular Imaging.

J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China.

Radiolabeled peptides are vital for positron emission tomography (PET) imaging, yet the F-labeling peptides remain challenging due to harsh conditions and time-consuming premodification requirements. Herein, we developed a novel vinyltetrazine-mediated bioorthogonal approach for highly efficient F-radiolabeling of a native peptide under mild conditions. This approach enabled radiosynthesis of various tumor-targeting PET tracers, including targeting the neurofibromin receptor (), the integrin αβ (), and the platelet-derived growth factor receptor β (), with a radiochemical yield exceeding 90%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!