Lithium-sulfur batteries (LSBs) are attracting much attention due to their high theoretical energy density and are considered to be the predominant competitors for next-generation energy storage systems. The practical commercial application of LSBs is mainly hindered by the severe "shuttle effect" of the lithium polysulfides (LiPSs) and the serious damage of lithium dendrites. Various carbon materials with different characteristics have played an important role in overcoming the above-mentioned problems. Carbon spheres (CSs) are extensively explored to enhance the performance of LSBs owing to their superior structures. The review presents the state-of-the-art advances of CSs for advanced high-energy LSBs, including their preparation strategies and applications in inhibiting the "shuttle effect" of the LiPSs and protecting lithium anodes. The unique restriction effect of CSs on LiPSs is explained from three working mechanisms: physical confinement, chemical interaction, and catalytic conversion. From the perspective of interfacial engineering and 3D structure designing, the protective effect of CSs on the lithium anode is also analyzed. Not only does this review article contain a summary of CSs in LSBs, but also future directions and prospects are discussed. The systematic discussions and suggested directions can enlighten thoughts in the reasonable design of CSs for LSBs in near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202104469 | DOI Listing |
Nano Lett
January 2025
The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
Robust interfaces in anodes play a crucial role in boosting sodium-ion battery (SIB) performance. However, the fragile interfaces constructed by a two-step synthesis or artificial stack are prone to be destroyed during the charging/discharging processes, which significantly reduces the lifetime of SIBs. Here, a facile construction strategy is developed to produce robust interfaces in hollow sphere-like CoSe/nitrogen-doped carbon (HS-CoSe/NC) using intrinsic Co, N, C in metal-organic framework as precursors, which enhance the electron/ion diffusion kinetics.
View Article and Find Full Text PDFLangmuir
January 2025
College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, P. R. China.
In the realm of zinc-air batteries, high bifunctional catalytic efficacy is intimately tied to the evaluation of catalysts. Consequently, the pursuit of proficient bifunctional catalysts that can efficiently catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a paramount objective in this research area. In this study, the spiny cobalt tetroxide (CoO) encapsulated hollow carbon spheres (HCSs) are constructed by anchoring CoO onto HCS via hydrothermal or annealing treatment.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Orthopedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
Background: Chordoma is a slow-growing, primary malignant bone tumor that arises from notochordal tissue in the midline of the axial skeleton. Surgical excision with negative margins is the mainstay of treatment, but high local recurrence rates are reported even with negative margins. High-dose radiation therapy (RT), such as with proton or carbon ions, has been used as an alternative to surgery, but late local failure remains a problem.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, P.R. China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, P.R. China. Electronic address:
The recovery of precious metal ions (PMI) from wastewater has great significances from both economic and environmental perspectives. However, current recovery methods face limitations, including low efficiency and selectivity, as well as challenges in practical applications. In this study, hollow N-doped carbon spheres (HNC) are proved to be promising for improving anionic AuCl and PdCl recovery via the curvature effect, outperforming non-curved carbon (commercial active carbon and carbon nanosheet) due to their unique curvature effect.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 China.
The dry reforming of methane (DRM) could convert CH and CO into syngas, offering potential for greenhouse gas mitigation. However, DRM catalyst sintering and carbon deposition remain major obstacles. In this study, a highly dispersed PtNi alloy@Zr-doped 3D hollow flower-like MgAlO (AMO) spheres was prepared through a hydrophobic driving strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!