A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-Assembly of Double-Helical Metallopolymers. | LitMetric

Self-Assembly of Double-Helical Metallopolymers.

Acc Chem Res

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

Published: February 2022

AI Article Synopsis

  • - Metallopolymers are versatile materials used in various fields like sensors, catalysis, and optoelectronics, allowing complex structures to be formed easily via metal-templated subcomponent self-assembly with dynamic covalent bonds.
  • - This Account focuses on double-helical metallopolymers made from two conjugated strands wrapping around a linear array of copper (Cu) ions, highlighting methods to control their length, orientation, and structure.
  • - The properties of these metallopolymers, such as color emission and conductivity, are influenced by their structural design, with applications in light-emitting electrochemical cells and charge transport technologies.

Article Abstract

Metal-containing polymers, or metallopolymers, have diverse applications in the fields of sensors, catalysis, information storage, optoelectronics, and neuromorphic computing, among other areas. The approach of metal-templated subcomponent self-assembly using dynamic covalent linkages allows complex architectures to be formed with relative synthetic ease. The dynamic nature of the linkages between subunits in these systems facilitates error checking during the assembly process and also provides a route to disassemble the structure, rendering these materials recyclable. This Account summarizes a class of double-helical metallopolymers. These metallopolymers are formed via subcomponent self-assembly and consist of two conjugated helical strands wrapping a linear array of Cu centers. Starting from discrete model helicates, we discuss how, through the judicious design of subcomponents, long helical metallopolymers can be obtained and detail their subsequent assembly into nanometer-scale aggregates. Two approaches to generate these helical metallopolymers are compared. We describe methods to govern (i) the length of the metallopolymers, (ii) the relative orientations (head-to-head vs head-to-tail) of the two organic strands, and (iii) the screw-sense of the double helix. Achieving structural control allowed the growth behavior of these systems to be probed. The structure influenced properties in ways that are relevant to specific applications; for example, the length of the metallopolymer determines the color of the light it emits in solution. In the solid state, the ionic nature of these helices renders them useful as both emitters and ionic additives in light-emitting electrochemical cells. Moreover, recent experimental work has clarified the role of the linear array of Cu ions in the transport of charge through these materials. The conductivity displayed by a film of metallopolymer depends upon its history of applied voltage and current, behavior characteristic of a memristor. In addition to the prospective applications already identified, others may be on the horizon, potentially combing stimuli-responsive electronic behavior with the chirality of the helical twist.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.1c00657DOI Listing

Publication Analysis

Top Keywords

double-helical metallopolymers
8
subcomponent self-assembly
8
linear array
8
helical metallopolymers
8
metallopolymers
7
self-assembly double-helical
4
metallopolymers metal-containing
4
metal-containing polymers
4
polymers metallopolymers
4
metallopolymers diverse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: