Purpose: This study aimed to investigate the potential of stratification of prostate cancer patients into low- and high-grade groups (GGs) using multiparametric magnetic resonance (mpMR) radiomics in conjunction with two-dimensional (2D) joint histograms computed with dynamic contrast-enhanced (DCE) images.
Methods: A total of 101 prostate cancer regions extracted from the MR images of 44 patients were identified and divided into training (n = 31 with 72 cancer regions) and test datasets (n = 13 with 29 cancer regions). Each dataset included low-grade tumors (International Society of Urological Pathology [ISUP] GG ≤ 2) and high-grade tumors (ISUP GG ≥ 3). A total of 137,970 features consisted of mpMR image (16 types of images in four sequences)-based and joint histogram (DCE images at 10 phases)-based features for each cancer region. Joint histogram features can visualize temporally changing perfusion patterns in prostate cancer based on the joint histograms between different phases or subtraction phases of DCE images. Nine signatures (a set of significant features related to GGs) were determined using the best combinations of features selected using the least absolute shrinkage and selection operator. Further, support vector machine models with the nine signatures were built based on a leave-one-out cross-validation for the training dataset and evaluated with receiver operating characteristic (ROC) curve analysis.
Results: The signature showing the best performance was constructed using six features derived from the joint histograms, DCE original images, and apparent diffusion coefficient maps. The areas under the ROC curves for the training and test datasets were 1.00 and 0.985, respectively.
Conclusion: This study suggests that the proposed approach with mpMR radiomics in conjunction with 2D joint histogram computed with DCE images could have the potential to stratify prostate cancer patients into low- and high-GGs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pros.24278 | DOI Listing |
Urologie
January 2025
Klinik für Urologie, Campus Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Deutschland.
This article provides a comprehensive overview of the current treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC) following the failure of first-line therapy. Although significant progress has been made in the primary treatment of hormone-sensitive prostate cancer, the management of mCRPC remains a clinical challenge. The article outlines the diagnostic criteria for mCRPC, which can be confirmed through biochemical progression and imaging techniques.
View Article and Find Full Text PDFUrologie
January 2025
Klinik für Urologie, Uro-Onkologie, roboter-assistierte und spezielle urologische Chirurgie, Uniklinik Köln, Kerpener Str. 62, 50927, Köln, Deutschland.
Introduction: Prostate cancer guidelines recommend molecular analysis of biomaterial following resistance to first-line systemic therapy in order to identify druggable mutations. We report on our results of molecular analysis of tissue specimens via next generation sequencing (NGS) in men with metastatic castration resistant prostate cancer (mCRPC).
Patients And Methods: In all, 311 mCRPC patients underwent NGS analysis from biopsy samples of progressive metastatic lesions or archival radical prostatectomy specimens.
Radiol Imaging Cancer
January 2025
From the Department of Radiology (A.C., A.N.Y., R.E., C.H., G.L., M.M., E.B.J., A.L.C., B.G., G.S.K., A.O.), Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy (A.C., A.N.Y., M.M., A.L.C., B.G.), Department of Surgery, Section of Urology (G.G., L.F.R., P.K.M., S.E.), Department of Pathology (T.A.), and Department of Public Health Sciences (M.G.), University of Chicago, 5841 S Maryland Ave, MC 2026, Chicago, IL 60637.
Purpose To evaluate the use of an automated hybrid multidimensional MRI (HM-MRI)-based tool to prospectively identify prostate cancer targets before MRI/US fusion biopsy in comparison with Prostate Imaging and Reporting Data System (PI-RADS)-based multiparametric MRI (mpMRI) evaluation by expert radiologists. Materials and Methods In this prospective clinical trial (ClinicalTrials.gov registration no.
View Article and Find Full Text PDFInt J Urol
January 2025
Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan.
Cancer Rep (Hoboken)
January 2025
Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Background: Current approach to clinically suspicious biopsy-naïve men consists performing prostate MRI, followed by combined systematic (TRUS-Bx) and MRI-Ultrasound fusion biopsy (MRI-TBx) in those with PIRADS score ≥ 3. Researchers have attempted to determine who benefits from each biopsy method, but the results do not support the safe use of one method alone. This study aims to determine the optimal approach in biopsy-naïve men, according to their PSA levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!