Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 (LINGO-1), a negative regulator of oligodendrocyte differentiation and myelination, is associated with cognitive function, and its expression is highly upregulated in Alzheimer's disease (AD) patients. Anti-LINGO-1 antibody treatment can effectively antagonize the negative regulatory effect of LINGO-1. In this study, we aim to assess the effect of anti-LINGO-1 antibody treatment on cognition and hippocampal oligodendrocytes in an AD transgenic animal model. First, 10-month-old male amyloid-β (Aβ) protein precursor (APP)/presenilin 1 (PS1) mice were administered anti-LINGO-1 antibody for 8 weeks. Then, learning and memory abilities were assessed with the Morris water maze (MWM) and Y-maze tests, and Aβ deposition and hippocampal oligodendrocytes were investigated by immunohistochemistry, immunofluorescence, and stereology. We found that anti-LINGO-1 antibody alleviated the deficits in spatial learning and memory abilities and working and reference memory abilities, decreased the density of LINGO-1 positive cells, decreased Aβ deposition, significantly increased the number of mature oligodendrocytes and the density of myelin, reversed the abnormal increases in the number of oligodendrocyte lineage cells and the densities of oligodendrocytes precursor cells in APP/PS1 mice. Our results provide evidence that LINGO-1 might be involved in the process of oligodendrocyte dysmaturity in the hippocampus of AD mice, and that antagonizing LINGO-1 can alleviate cognitive deficits in APP/PS1 mice and decrease Aβ deposition and promote oligodendrocyte differentiation and maturation in the hippocampus of these mice. Our findings suggest that changes in LINGO-1 and oligodendrocytes in the hippocampus play important roles in the pathogenesis of AD and that antagonizing LINGO-1 might be a potential therapeutic strategy for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.25299 | DOI Listing |
Brain Pathol
January 2025
Department of Neurology, Institute of Translational Neurology, University of Münster, Münster, Germany.
Demyelination of corticospinal tract neurons contributes to long-term disability after cortical stroke. Nonetheless, poststroke myelin loss has not been addressed as a therapeutic target, so far. We hypothesized that an antibody-mediated inhibition of the Nogo receptor-interacting protein (LINGO-1, leucine-rich repeat and immunoglobulin domain-containing Nogo receptor-interacting protein) may counteract myelin loss, enhance remyelination and axonal growth, and thus promote functional recovery following stroke.
View Article and Find Full Text PDFCurr Neuropharmacol
May 2024
Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy.
Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes.
View Article and Find Full Text PDFNeurosci Lett
January 2024
Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China. Electronic address:
In Alzheimer's disease (AD), microglia are involved in synaptic pruning and mediate synapse loss. LINGO-1 is a negative regulator of nerve growth, and whether antagonizing LINGO-1 can attenuate synaptic pruning by microglia and rescue dendritic spines in the hippocampus in AD is still unclear. On this basis, the anti-LINGO-1 antibody, which binds to LINGO-1 protein and antagonizes the effects of LINGO-1, was administered to 10-month-old APP/PS1 transgenic mice for 2 months.
View Article and Find Full Text PDFNeurosci Res
August 2023
Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China. Electronic address:
The medial prefrontal cortex (mPFC), one of the most vulnerable brain regions in Alzheimer's disease (AD), plays a critical role in cognition. Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein-1 (LINGO-1) negatively affects nerve growth in the central nervous system; however, its role in the pathological damage to the mPFC remains to be studied in AD. In this study, an anti-LINGO-1 antibody was administered to 10-month-old APP/PS1 mice, and behavioral tests, stereological methods, immunohistochemistry and immunofluorescence were used to answer this question.
View Article and Find Full Text PDFJ Comp Neurol
July 2022
Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China.
Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 (LINGO-1), a negative regulator of oligodendrocyte differentiation and myelination, is associated with cognitive function, and its expression is highly upregulated in Alzheimer's disease (AD) patients. Anti-LINGO-1 antibody treatment can effectively antagonize the negative regulatory effect of LINGO-1. In this study, we aim to assess the effect of anti-LINGO-1 antibody treatment on cognition and hippocampal oligodendrocytes in an AD transgenic animal model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!