In this paper, three different mass fractions of sodium carbonate were used for degumming to obtain different degrees of damaged silk fibroin fibers, which were then treated with formic acid to shrink and bond them into 3D scaffolds. The structure and performance of silk fibroin fibers and silk fibroin 3D scaffolds were characterized by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, a differential thermal scanner, a universal materials testing machine, and laser confocal microscopy, and the degradation performance was tested by protease degradation. The results showed that an excessive mass fraction of sodium carbonate would cause partial hydrolysis of fibroin fibers, decrease the mechanical properties of fibroin fiber, increase the surface roughness of fibroin fibers, and make mouse embryonic fibroblasts easier to adhere and grow. Silk fibroin fibers were slightly dissolved, shrunk, and dispersed in formic acid. The mass fraction of sodium carbonate can adjust the enzymatic degradation rate of the silk fibroin 3D scaffolds. With the extension of the degradation time, minerals will be deposited on the surface of the scaffolds. The results show that the silk fibroin 3D scaffolds have biocompatibility, mechanical properties, and degradability, which provides a good material for a barrier biofilm in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.0c01239 | DOI Listing |
J Biomed Mater Res B Appl Biomater
February 2025
School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Due to its availability and biocompatibility, the human amniotic membrane (hAM) is being investigated by a large number of researchers with the goal of gaining a better understanding of the materials' mechanical behavior and structural integrity and optimizing them for various Tissue Engineering applications. In this research, biopolymers sodium alginate (SA) and silk fibroin (SF) were electrospun onto a decellularized hAM, resulting in two types of hybrid scaffolds: hAM/SF and hAM/SF/SA. The mechanical characteristics of these nanofibers were then analyzed to guide scaffold optimization for applications using these materials.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
Chronic wounds significantly contribute to disability and affect the mortality rate in diabetic patients. In addition, pressure ulcers, diabetic foot ulcers, arterial ulcers, and venous ulcers pose a significant health burden due to their associated morbidity and death. The complex healing process, environmental factors, and genetic factors have been identified as the rate-limiting stages of chronic wound healing.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Fibrothelium GmbH, Aachen, Germany.
Biliary duct reconstruction is one of the most challenging parts of liver transplantation and accounts for 40%-60% of complications. While current stent-based devices on the market show promising results in reducing complications, they are manufactured from permanent synthetic materials and require a second reintervention for their removal. This exposes the patients to other potential complications and increases healthcare costs.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Physics, College of Physical Science and Technology, Research Institution for Biomimetics and Soft Matter, Xiamen University, Xiamen, Fujian, 361005, China.
Flexible wearable electronic devices, capable of real-time physiological monitoring for personalized health management, are increasingly recognized for their convenience, comfort, and customization potential. Despite advancements, challenges persist for soft electrodes due to the skin's complex surface, biocompatibility demands, and modulus mismatch. In response, a mussel-inspired polydopamine-nanoclay-silk fibroin hydrogel (DA-C-SFH) is introduced, synthesized via a two-step process.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
While silk fibroin (SF) obtained from silkworm cocoons is expected to become a next-generation natural polymer, a fabrication method for SF-based artificial nerve conduits (SFCs) has not yet been established. Here, we report a bioresorbable SFC, fabricated using a novel freeze-thaw process, which ensures biosafety by avoiding any harmful chemical additives. The SFC demonstrated favorable biocompatibility (high hydrophilicity and porosity with a water content of > 90%), structural stability (stiffness, toughness, and elasticity), and biodegradability, making it an ideal candidate for nerve regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!