This review summarizes essential information about the chemical stability of NaYF-based upconverting nanoparticles (UCNPs) in aqueous solutions, a crucial aspect for achieving high quality standards for biomedical materials. We present an in-depth analysis of the major experimental evidence and proposed mechanisms that provide a theoretical framework for understanding UCNPs degradation, destabilization, and dissolution under different conditions such as media composition, temperature, particle size, and the synthetic methods employed. The ion release and disintegration of the UCNP crystal structure may trigger cytotoxic events within living organisms and impact on their optical properties, precluding their safe use in biological environments. Also, we present a summary of the characterization techniques' toolbox employed for monitoring and detecting these degradation processes. Closing the existing "information gap" that links UCNP physicochemical properties, such as solubility and chemical stability, with the biological response of living organisms or tissues, is vital for using these nanoparticles as biological tracer probes, theranostic vehicles, or for clinical purposes. The understanding of chemical phenomena at the nanoparticle solid-liquid interface is mandatory to complete the molecular picture of nanosized objects, orienting in a rational manner the efforts of research and development in the early stages of these functional materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.0c01562 | DOI Listing |
Sci Rep
January 2025
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Modeling and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States.
Potency optimization of macrocyclic peptides can include both modifying intermolecular interactions and modifying the conformational stability of the bioactive conformation. However, the number of possible modifications is vast. To identify modifications that enhance the stability of the binding conformations in a cost-effective manner, there is a need for a high-throughput in-silico method that scores the conformational stability of these modified molecules.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
Formamidopyrimidine DNA glycosylase (Fpg) and flap endonuclease 1 (FEN1) are essential to sustaining genomic stability and integrity, while the abnormal activities of Fpg and FEN1 may lead to various diseases and cancers. The development of simple methods for simultaneously monitoring Fpg and FEN1 is highly desirable. Herein, we construct a multiple cyclic ligation-promoted exponential recombinase polymerase amplification (RPA) platform for sensitive and simultaneous monitoring of Fpg and FEN1 in cells and clinical tissues.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical and Environmental Engineering and Pro-Vice-Chancellor (Planning & Resources), University of Mauritius, Reduit, Mauritius.
Polyhydroxyalkanoates (PHAs) represent a promising class of biodegradable polyesters synthesized by various microorganisms as energy storage compounds. Their versatility and environmental friendliness make them potential candidates for replacing conventional plastics across numerous applications. However, challenges such as limited mechanical properties, high production costs, and thermal instability have hindered their widespread adoption.
View Article and Find Full Text PDFImmunity
January 2025
Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Munich, Germany. Electronic address:
Common genetic variants in a conserved cis-regulatory element (CRE) at histone deacetylase (HDAC)9 are a major risk factor for cardiovascular disease, including stroke and coronary artery disease. Given the consistency of this association and its proinflammatory properties, we examined the mechanisms whereby HDAC9 regulates vascular inflammation. HDAC9 bound and mediated deacetylation of NLRP3 in the NACHT and LRR domains leading to inflammasome activation and lytic cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!