Emerging Microfluidic Technologies for the Detection of Circulating Tumor Cells and Fetal Nucleated Red Blood Cells.

ACS Appl Bio Mater

Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Published: February 2021

Blood tests have been a powerful tool for the clinical analysis of many diseases. With the advances in microfluidic technology, two more specific indicators from the circulation system, namely, emerging "liquid biopsy" of circulating tumor cells (CTCs) and fetal nucleated red blood cells (fNRBCs), can be screened and analyzed as a simple blood test for the noninvasive diagnosis of cancers as well as fetal disorders. The unique feature of precisely manipulating a trace of fluid endows microfluidic devices with the ability to isolate CTCs or fNRBCs from numerous blood cells with high performance, which undoubtedly facilitates biomedical applications of these two kinds of rare cells. In this review, advanced developments in microfluidic technologies focusing on the detection and sorting of rare CTCs and fNRBCs from peripheral blood are summarized. The development of microfluidic devices incorporated with various multifunctional microstructures and nanomaterials for enhancing the sensitivity, purity, and viability of CTC or fNRBC detection enables CTC molecular analysis and fNRBC-based noninvasive prenatal diagnosis (NIPD). These microfluidics-based approaches provide great potential opportunities in noninvasive cancer diagnosis or NIPD applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.0c01325DOI Listing

Publication Analysis

Top Keywords

blood cells
12
microfluidic technologies
8
circulating tumor
8
tumor cells
8
fetal nucleated
8
nucleated red
8
red blood
8
microfluidic devices
8
ctcs fnrbcs
8
diagnosis nipd
8

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.

View Article and Find Full Text PDF

Blood storage lesion induces cytosolic and membrane changes driven in part by hemoglobin (Hb) oxidation reactions within red blood cells (RBCs). A novel gel formulation containing the antioxidant curcuminoids in a biocompatible solvent system was used to deliver curcumin into RBCs. Incubation of peroxide treated RBCs stored in PBS with curcumin gel led to a reduction in prooxidant ferrylHb and recovery in ATP.

View Article and Find Full Text PDF

Identification and validation of up-regulated TNFAIP6 in osteoarthritis with type 2 diabetes mellitus.

Sci Rep

December 2024

Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!