Optical biosensors are sensitive devices used in bioanalytics detection. Analysis of blood constituents is very important for the detection of major diseases and also performs a significant role in the diagnosis of diabetes, various cancers, and cardiovascular disorders. In this work, a three-dimensional photonic crystal-based biosensor composed of zeolitic imidazolate framework-8 (ZIF-8) nanoarrays are placed on polydopamine (PDA) coated on a silicon substrate. This sensor is designed, simulated, and evaluated for various blood components in the wavelength range of 1.1 to 1.5 μm by the finite-difference time-domain (FDTD) method. The proposed biosensor was used for 10 types of blood components such as biotin-streptavidin, bovine serum albumin (BSA), cytop, glucose (40 mg/100 mL), hemoglobin, blood plasma, Sylgard184, white blood compounds, urethane dimethacrylate, and polyacrylamide. The FDTD technique was used for the performance analysis of the biosensor. The design parameters of the radius, the lattice constant, the thickness of the ZIF-8 arrays, and the PDA layer thickness are chosen to optimize the photonic crystal structure. This study indicates that the thickness of the PDA is the most important parameter for peak wavelength value in comparison to the other physical parameters. The factors for optimizing the photonic crystal-based biosensors such as the peak wavelength value (PWV), sensitivity, full width at half-maximum (FWHM), and figure of merit (FOM) are significant in comparison with pertinent works in this field, which evaluated 171 nm/RIU, 7.62 nm, and 22.5 RIU, respectively. A change of 0.01 nm in the refractive index of the constituents of the blood leads to a shift of 80 nm in the maximum peak wavelength, therefore acting as a functional biosensor with a high detection limit of 0.004 RIU.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.0c01586 | DOI Listing |
Nano Lett
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China.
Strong coupling between excitons and photons in optical microcavities leads to the formation of exciton polaritons, which maintain both the coherence of light and the interaction of matter. Recently, atomically thin monolayer semiconductors with a large exciton oscillator strength and high exciton binding energy have been widely used for realizing room-temperature exciton polaritons. Here, we demonstrated room-temperature exciton polaritons with a monolayer molecular crystal.
View Article and Find Full Text PDFBeilstein J Nanotechnol
November 2024
Centre for Quantum Engineering, Research and Education (CQuERE), TCG-Centres for Research and Education in Science and Technology (TCG-CREST), Sector V, Salt Lake, Kolkata-700091, India.
Lithium niobate (LN) stands out as a versatile nonlinear optoelectronic material which can be directly applied in tunable modulators, filters, parametric amplifiers, and photonic integrated circuits. Recently, LN photonic crystals have garnered attention as a compelling candidate for incorporation into photonic integrated circuits, showcasing their potential in advancing the field. Photonic crystals possess a widely acknowledged capability to manipulate the transmission of light modes, similar to how nanostructures have been utilized to regulate electron-related phenomena.
View Article and Find Full Text PDFAdv Mater
November 2024
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.
Chemoresponsive dyes offer the potential to selectively detect volatile organic compounds (VOCs) unique to certain disease states. Among different VOC sensing techniques, colorimetric sensing offers the advantage of facile recognition. However, it is often challenging to discern the color changes by the naked eye.
View Article and Find Full Text PDFNat Commun
September 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China.
Organic crystal-based superimposed heterostructures with inherent multichannel characteristics demonstrate superior potential for manipulating excitons/photons at the micro/nanoscale for integrated optoelectronics. However, the precise construction of organic superimposed heterostructures with fixed superimposed sites remains challenging because of the random molecular nucleation process. Here, organic vertically superimposed heterostructures (OSHs) with fixed superimposed positions are constructed via semi-wrapped core/shell heterostructures with partially exposed cores, which provide preferential nucleation sites for further molecular epitaxial growth processes.
View Article and Find Full Text PDFLight Sci Appl
August 2024
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, 100048, Beijing, China.
Achieving high-luminescence organic light-emitting devices (OLEDs) with narrowband emission and high color purity is important in various optoelectronic fields. Laser displays exhibit outstanding advantages in next-generation display technologies owing to their ultimate visual experience, but this remains a great challenge. Here, we develop a novel OLED based organic single crystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!