Unraveling the changing rule of endoplasmic reticulum (ER) polarity is of significance for liver injury. However, the rule of the ER polarity changes during the occurrence and progression of liver injury remains a mystery. Toward that, a unique fluorescent probe, , capable of imaging ER polarity in multiple liver injury models with high accuracy and fidelity was designed herein. In light of its excellent solvatochromism, the ER polarity was determined to be higher in the case of endoplasmic reticulum stress (ERS) induced by tunicamycin and dithiothreitol than that of the normal state at the cell level. Importantly, with the assistance of the PerkinElmer IVIS Spectrum imaging system and the powerful tool of , our work first revealed that the ER polarity increases with the evolution of liver injuries. Moreover, as a demonstration, achieved evaluating hepatoprotective drug efficacy by detecting ER polarity, confirming its high clinical application prospect. Thus, our work not only first unravels the rule of ER polarity in dynamic liver injury progression but may also inspire more diagnostic and therapeutic programs for liver diseases shortly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.1c00130 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!