A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of a Genetically Programmed Biomimetic Lipase Nanoreactor. | LitMetric

Design of a Genetically Programmed Biomimetic Lipase Nanoreactor.

ACS Appl Bio Mater

Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.

Published: April 2021

Alternative to the traditionally independent production of lipase, chemical synthesis of nano-carriers, and then preparing nanoimmobilized enzymes, we exploit a yeast genetically programmed virus biomimetic lipase nanoreactor in a sustainable manner. The nanoreactor biogenesis process integrated lipase production, protein component (coat-protein subunit and scaffold protein) production, self-assembly of protein components, and the encapsulation of lipase into protein nanocages using a simple process. It included overexpression of nanocage components, coat-protein subunits, and fused lipase-scaffold proteins and subsequent spontaneous self-assembly and encapsulation based on the specific interaction between the coat-protein subunit and the scaffold protein fused in the target lipase enzyme. The genetically programmable lipase nanoreactor showed improved stability under various harsh conditions, and was validated in fatty acid methyl ester synthesis with 86% yield at a high concentration of waste cooking oil (200 mM), which demonstrates the robustness and feasibility of the lipase nanoreactor in biodiesel production.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.1c00048DOI Listing

Publication Analysis

Top Keywords

lipase nanoreactor
16
genetically programmed
8
lipase
8
biomimetic lipase
8
coat-protein subunit
8
subunit scaffold
8
scaffold protein
8
nanoreactor
5
protein
5
design genetically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!