Bacteria Inspired Internal Standard SERS Substrate for Quantitative Detection.

ACS Appl Bio Mater

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.

Published: March 2021

Metal-respiring bacteria are frequently used to recycle metal resources by biosynthesizing nanoparticles on its surface in environment treatment. However, further utilization of biogenetic nanoparticles through combining the advantages of both bacteria and nanoparticles is still limited. Herein, biogenetic Au@Ag nanoislands are utilized as the surface-enhanced Raman spectroscopy (SERS) substrate for quantitative detection. Specifically, Au@Ag nanoislands enhance the Raman signal surface plasmon resonance, while biomolecules (phospholipid, tyrosine, and phenylalanine, etc.) on bacterium serve as an internal standard to eliminate the discrepancy of the target SERS intensity in different hot spots. Gene-controlled biomolecules in bacteria guarantee the reproducibility of this SERS substrate. The generality of this analytical method is demonstrated by determining rhodamine 6G, malachite green, and uric acid. This discovery solves a pervasive problem in SERS analysis through a simple biogenetic nanosystem, which opens up an avenue to address scientific challenges by using versatile organisms from nature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.0c00263DOI Listing

Publication Analysis

Top Keywords

sers substrate
12
internal standard
8
substrate quantitative
8
quantitative detection
8
au@ag nanoislands
8
sers
5
bacteria
4
bacteria inspired
4
inspired internal
4
standard sers
4

Similar Publications

Magnetic optimizing surface-enhanced Raman scattering (SERS) strategy of detection and in-situ monitoring of photodegradation of Benzo[a]pyrene in water.

Anal Chim Acta

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:

Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.

View Article and Find Full Text PDF

Porous Nanoframe Based Plasmonic Structure With High-Density Hotspots for the Quantitative Detection of Gaseous Benzaldehyde.

Small

January 2025

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.

Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.

View Article and Find Full Text PDF

This study reports the synthesis of plasmonic hot nanogap networks-in-triangular nanoframes (NITNFs), featuring narrow intraparticle nanogap networks embedded within triangular nanoframes. Starting from Au nanotriangles, Pt NITNFs are synthesized through a cascade reaction involving simultaneous Pt deposition and Au etching in a one-pot process. The Pt NITNFs are then transformed into plasmonically active Au NITNFs via Au coating.

View Article and Find Full Text PDF

Polyethyleneimine-assisted one-pot synthesis of Au nanodendrites on carbon nanotube sheet as an efficient SERS substrate.

Mikrochim Acta

January 2025

College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, 211816, Jiangsu, China.

A polyethyleneimine (PEI)-assisted simple and efficient one-pot hydrothermal reduction method is reported to prepare high-quality gold nanodendrites (AuNDs) on a carbon nanotube (CNT) sheet. We observed that the prepared AuNDs have a well-defined backbone-multiple branching structure. With the systematical investigation of the growth mechanism, it was found that the bromide (Br) ion concentration has an essential effect on the formation of AuNDs.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!