Whatman No. 1 chromatography paper is widely used as a substrate for cellulose-based immunoassays. The immobilized proteins are used to capture target biomarkers for detection. However, alternative paper substrates may facilitate mass production of immunoassays as diagnostic tests. Here, we assessed the physical characteristics and protein immobilization capabilities of different commercial papers. Some substrates fulfilled our design criteria, including adequate flow rate and sufficient protein immobilization for efficient target capture. This study demonstrates that a variety of paper substrates can be bioactivated and used to capture target biomarkers, enabling development of affordable diagnostic tests from a range of starting materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.0c01474DOI Listing

Publication Analysis

Top Keywords

capture target
8
target biomarkers
8
paper substrates
8
diagnostic tests
8
protein immobilization
8
functional comparison
4
comparison bioactive
4
bioactive cellulose
4
cellulose materials
4
materials incorporating
4

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

Background: Ulcerative colitis patients who undergo ileal pouch-anal anastomosis (IPAA) without mucosectomy may develop inflammation of the rectal cuff (cuffitis). Treatment of cuffitis typically includes mesalamine suppositories or corticosteroids, but refractory cuffitis may necessitate advanced therapies or procedural interventions. This review aims to summarize the existing literature regarding treatments options for cuffitis.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!