Chiral separation using cyclodextrins as mobile phase additives in open-tubular liquid chromatography with a pseudophase coating.

J Sep Sci

Australian Centre for Research on Separation Science, School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, Australia.

Published: March 2022

The chiral separation of various analytes (dichlorprop, mecoprop, ibuprofen, and ketoprofen) was demonstrated with different cyclodextrins as mobile phase additives in open-tubular liquid chromatography using a stationary pseudophase semipermanent coating. The stable coating was prepared by a successive multiple ionic layer approach using poly(diallyldimethylammonium chloride), polystyrene sulfonate, and didodecyldimethyl ammonium bromide. Increasing concentrations (0-0.2 mM) of various native and derivatized cyclodextrins in 25 mM sodium tetraborate (pH 9.2) were investigated. Chiral separation was achieved for the four test analytes using 0.05-0.1 mM β-cyclodextrin (resolution between 1.11 and 1.34), γ-cyclodextrin (resolution between 0.78 and 1.27), carboxymethyl-β-cyclodextrin (resolution between 1.64 and 2.59), and 2-hydroxypropyl-β-cyclodextrin (resolution between 0.71 and 1.76) with the highest resolutions obtained with 0.1 mM carboxymethyl-β-cyclodextrin. %RSD values were <10%. This is the first demonstration of chiral open-tubular liquid chromatography using achiral chromatographic coatings and cyclodextrins as mobile phase additives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304321PMC
http://dx.doi.org/10.1002/jssc.202100835DOI Listing

Publication Analysis

Top Keywords

chiral separation
12
cyclodextrins mobile
8
mobile phase
8
phase additives
8
additives open-tubular
8
open-tubular liquid
8
liquid chromatography
8
separation cyclodextrins
4
chromatography pseudophase
4
pseudophase coating
4

Similar Publications

Computer simulation was utilized to characterize the electrophoretic processes occurring during the enantioselective capillary electrophoresis-mass spectrometry (CE-MS) analysis of ketamine, norketamine, and hydroxynorketamine in a system with partial filling of the capillary with 19 mM (equals 5%) of highly sulfated γ-cyclodextrin (HS-γ-CD) and analyte detection on the cathodic side. Provided that the sample is applied without or with a small amount of the chiral selector, analytes become quickly focused and separated in the thereby formed HS-γ-CD gradient at the cathodic end of the sample compartment. This gradient broadens with time, remains stationary, and gradually reduces its span from the lower side due to diffusion such that analytes with high affinity to the anionic selector become released onto the other side of the focusing gradient where anionic migration and defocusing occur concomitantly.

View Article and Find Full Text PDF

Efficient enantioselective separation is a critical process in pharmaceutical and chemical industries for the production of chiral compounds. Herein, we developed a novel approach for the efficient enantioselective separation of primary amines using supercritical fluid chromatography (SFC) with a commercially available SFC column, Cel1. The key factors of separation, including cosolvent ratios, total cosolvent percentages, and temperature, were systematically assessed in this study.

View Article and Find Full Text PDF

Background: Isotopologues resulting from the labelling of molecules with deuterium have attracted interest due to the isotope effect observed in chemistry and biosciences. Isotope effect may also play out in noncovalent interactions and mechanisms leading to intermolecular recognition. In chromatography, differences in retention time between isotopologues, as well as between isotopomers have been observed resulting in two different elution sequences (isotope effects): the normal isotope effect when heavier isotopologues retain longer than lighter analogues, and the inverse isotope effect featuring the opposite elution order.

View Article and Find Full Text PDF

Preparation of novel chiral stationary phases based on chiral metal-organic cages enable extensive HPLC enantioseparation.

Anal Chim Acta

February 2025

Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, China. Electronic address:

Background: The metal organic cages (MOCs) are an emerging type of porous material that has attracted considerable research interest due to their unique properties, including good stability and well-defined intrinsic cavities. The chiral MOCs with porous structures have broad application prospects in enantiomeric recognition and separation. However, there are almost no relevant reports on chiral MOCs as chiral stationary phases (CSPs) for enantioseparation by high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

Despite having identical physicochemical properties, chiral molecules require effective separation techniques due to their distinct pharmacological effects. Polysaccharide-based chiral stationary phases (CSPs) are widely used for chiral separations in liquid chromatography; however, the mechanisms of chiral recognition are not well understood. This research explored the adsorption, retention, and chiral recognition mechanisms of three amylose-based CSPs: Chiralpak ID, IF, and IG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!