Deep hypothermic circulatory arrest (DHCA) can cause acute lung injury (ALI), and its pathogenesis mimics ischaemia/reperfusion (I/R) injury. Autophagy is also involved in lung I/R injury. The present study aimed to elucidate whether DHCA induces natural autophagy activation and its role in DHCA-mediated lung injury. Here, rats were randomly assigned to the Sham or DHCA group. The sham group (n = 5) only received anaesthesia and air intubation. DHCA group rats underwent cardiopulmonary bypass (CPB) followed by the DHCA procedure. The rats were then sacrificed at 3, 6 and 24 h after the DHCA procedure (n = 5) to measure lung injury and autophagy activity. Chloroquine (CQ) was delivered to evaluate autophagic flux. DHCA caused lung injury, which was prominent 3-6 h after DHCA, as confirmed by histological examination and inflammatory cytokine quantification. Lung injury subsided at 24 h. Autophagy was suppressed 3 h but was exaggerated at 6 h. At both time points, autophagic flux appeared uninterrupted. To further assess the role of autophagy in DHCA-mediated lung injury, the autophagy inducer rapamycin and its inhibitor 3-methyladenine (3-MA) were applied, and lung injury was reassessed. When rapamycin was administered at an early time point, lung injury worsened, whereas administration of 3-MA at a late time point ameliorated lung injury, indicating that autophagy contributed to lung injury after DHCA. Our study presents a time course of lung injury following DHCA. Autophagy showed adaptive yet protective suppression 3 h after DHCA, as induction of autophagy caused worsening of lung tissue. In contrast, autophagy was exaggerated 6 h after DHCA, and autophagy inhibition attenuated DHCA-mediated lung injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831962 | PMC |
http://dx.doi.org/10.1111/jcmm.17165 | DOI Listing |
Tissue Barriers
January 2025
Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China.
Acute lung injury (ALI) is a severe inflammatory condition of the respiratory system, associated with high morbidity and mortality. This study investigates the therapeutic potential of tocilizumab (TZ), an IL-6 receptor inhibitor, in mitigating lipopolysaccharide (LPS)-induced ALI by modulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. An ALI model was established using LPS induction.
View Article and Find Full Text PDFBMJ Open Respir Res
December 2024
Department of Design Sciences, Lund University, Lund, Sweden
Rationale: Preterm infants diagnosed with bronchopulmonary dysplasia (BPD) are thought to have fewer and larger alveoli than their term peers, but it is unclear to what degree this persists later in life.
Objectives: To investigate to what degree the distal airspaces are enlarged in adolescents born preterm and to evaluate the new Airspace Dimension Assessment (AiDA) method in investigating this group.
Methods: We investigated 41 adolescents between 15 and 17 years of age, of whom 25 were born very preterm (a gestational age <31 weeks, with a mean of 26 weeks) and 16 were term-born controls.
J Clin Med
December 2024
Department of Anesthesiology and Intensive Care Medicine CCM/CVK Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany.
Treatment with veno-venous extracorporeal membrane oxygenation (VV ECMO) has become a frequently considered rescue therapy in patients with severe acute respiratory distress syndrome (ARDS). Hemolysis is a common complication in patients treated with ECMO. Currently, it is unclear whether increased ECMO blood flow (Q̇) contributes to mortality and might be associated with increased hemolysis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.
While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!