Vibration and noise are ubiquitous in social life, which severely damage machinery and adversely affect human health. Thus, the development of materials with high-damping performance is of great importance. Rubbers are typically used as damping materials because of their unique viscoelasticity. However, they do not satisfy the requirements of different applications with various working conditions. In this study, the advantages of the high loss factor of styrene butadiene rubber (SBR) are combined with the strong designability of polyurethane. Hydroxyl-terminated solution-polymerized styrene butadiene rubbers (HTSSBRs) with different structures are prepared using anionic polymerization. HTSSBRs are then used as the soft segment during the synthesis of temperature-tunable high-damping performance polyurethanes (HTSSBR-polyurethanes (PUs)). The prepared HTSSBR-PUs with different structures exhibit excellent loss performance, a maximum loss factor (tan δ ) of above 1.60, and an effective damping performance over a wide temperature range compared to traditional SBR and polyurethane. Therefore, this work offers an effective method for the design of damping materials with adjustable properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202100692DOI Listing

Publication Analysis

Top Keywords

styrene butadiene
12
hydroxyl-terminated solution-polymerized
8
solution-polymerized styrene
8
high-damping performance
8
damping materials
8
loss factor
8
controllable design
4
design preparation
4
preparation hydroxyl-terminated
4
butadiene polyurethane
4

Similar Publications

The global asphalt production growth rate exceeded 10% in the past decade, and over 90% of the world's road surfaces are generated from asphalt materials. Therefore, the issue of asphalt aging has been widely researched. In this study, the aging of asphalt thin films under various natural conditions was studied to prevent the distortion of indoor simulated aging and to prevent the extraction of asphalt samples from road surfaces from impacting the aged asphalt.

View Article and Find Full Text PDF

Effect of Plasma Treatment on Coating Adhesion and Tensile Strength in Uncoated and Coated Rubber Under Aging.

Materials (Basel)

January 2025

Mechanical Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain.

The degradation of rubber materials under environmental and mechanical stress presents a significant challenge, particularly due to UV (ultraviolet light) exposure, which severely impacts the material's physical properties. This study aims to enhance the UV stability and longevity of rubber by evaluating the performance of modified polyurethane and silicone coatings as protective stabilizers. Natural rubber-styrene-butadiene rubber (NR-SBR), known for its exceptional mechanical properties, was selected as the base material.

View Article and Find Full Text PDF

Can the Dimensional Optimisation of 3D FDM-Manufactured Parts Be a Solution for a Correct Design?

Materials (Basel)

January 2025

Industrial Engineering and Robotics Faculty, Politehnica University of Bucharest, Spl. Independentei 303, 060042 Bucharest, Romania.

Additive manufacturing technology, also known as 3D printing, has emerged as a viable alternative in modern manufacturing processes. Unlike traditional manufacturing methods, which often involve complex mechanical operations that can lead to errors and inconsistencies in the final product, additive technology offers a new approach that enables precise layer-by-layer production with improved geometric accuracy, reduced material consumption and increased design flexibility. Geometrical accuracy is a critical issue in industries such as aerospace, automotive, medicine and consumer goods, hence the importance of the following question: can the dimensional optimisation of 3D FDM-manufactured parts be a solution for correct design? This paper presents a complex study of model parts printed from four common polymers used in fused deposition modelling (FDM) additive technology, namely ABS (acrylonitrile-butadiene-styrene), PLA (polylactic acid), HIPS (high-impact polystyrene) and PETG (polyethylene terephthalate glycol).

View Article and Find Full Text PDF

In modern manufacturing environments, pollution management is critical as exposure to harmful substances can cause serious health issues. This study presents a two-stage computational fluid dynamic (CFD) model to estimate the distribution of pollutants in indoor production spaces. In the first stage, the Reynolds-averaged Navier-Stokes (RANS) method was used to simulate airflow and temperature.

View Article and Find Full Text PDF

3D printing technology, also known as Additive Manufacturing (AM), has revolutionized object prototyping, offering a simple, cost-effective, and efficient approach to creating structures with diverse spatial features. However, the mechanical properties of 3D-printed structures are highly dependent on the material type and manufacturing technique employed. In this study, ultrasonic testing methods were used to comprehensively characterize standard samples produced using two popular printing techniques: material extrusion and vat photopolymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!