Idebenone relieves the damage of heat stress on the maturation and developmental competence of porcine oocytes.

Reprod Domest Anim

Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China.

Published: April 2022

The reproductive function of animals is often affected by climatic conditions. High-temperature conditions can cause damage to oocyte maturation and embryonic development in a variety of ways. The purpose of this study was to prove that supplementation idebenone (IDB) to the maturation medium can improve the maturation and development of porcine oocytes after heat stress (HS). Porcine cumulus-oocyte complexes (COCs) were cultured in the maturation medium with different concentrations of IDB (0, 0.1, 1 and 10 μM) for 44 hr at either 38.5°C or under the HS conditions. The cumulus oophorus expansion, nuclear maturation and blastocyst rate after parthenogenetic activation (PA) were measured. We found that HS (in vitro maturation 20-24 hr, 42°C) exposure significantly reduced cumulus expansion index and maturation rate of oocytes and the blastocyst rate of PA embryos, while IDB supplementation significantly improved oocyte maturation and development to the blastocysts stage after PA. Moreover, the addition of IDB decreased the intracellular level of ROS and increased GSH content, hence enhancing the antioxidant capacity of oocytes under HS. Meanwhile, IDB treatment also obviously improved the mitochondrial membrane potential and ATP synthesis of oocytes under HS conditions. Furthermore, IDB treatment increased the expression of GDF9 and BMP15 in IVM oocytes which attribute to improve the quality and outcome of IVM oocytes and the development competence of PA embryos in pigs. In summary, we demonstrated that IDB supplementation into the maturation medium exerted protective effects and improved the ability of maturation and developmental competence of porcine oocytes exposed to HS.

Download full-text PDF

Source
http://dx.doi.org/10.1111/rda.14080DOI Listing

Publication Analysis

Top Keywords

porcine oocytes
12
maturation medium
12
maturation
11
heat stress
8
maturation developmental
8
developmental competence
8
competence porcine
8
oocytes
8
oocyte maturation
8
maturation development
8

Similar Publications

Formononetin promotes porcine oocytes maturation and improves embryonic development by reducing oxidative stress.

Front Cell Dev Biol

January 2025

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.

Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation and embryonic development. Conventionally, antioxidants have been applied systems to improve oocyte maturation and blastocyst rates. Formononetin (FMN) is a flavonoid that has been shown to have various pharmacological effects, including antioxidants.

View Article and Find Full Text PDF

miRNA-125a regulates porcine oocyte maturation in vitro by targeting ADAR.

Theriogenology

January 2025

Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133000, China. Electronic address:

Follicular fluid extracellular vesicles are beneficial for in vitro oocyte maturation and development; however, their effect on the expression profiles of oocyte microRNAs (miRNAs) and the roles of related miRNAs are unknown. In this study, we aimed to investigate miRNA expression in mature oocytes cultured in follicular fluid extracellular vesicles and the effect of miRNA-125a (miR-125a) on oocyte maturation. The expression profiles of the miRNAs were determined by microRNA sequencing, followed by target gene prediction analysis.

View Article and Find Full Text PDF

Equol Alleviates the In Vitro Aging-Induced Disruption of Porcine Oocytes.

Reprod Domest Anim

January 2025

College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China.

Oocyte quality is crucial for determining the subsequent embryo developmental capacity and reproductive outcomes. However, aging is detrimental to oocyte quality. Previous studies have demonstrated that soy isoflavones have positive effects on the reproductive performance of female pigs.

View Article and Find Full Text PDF

Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!