The reproductive function of animals is often affected by climatic conditions. High-temperature conditions can cause damage to oocyte maturation and embryonic development in a variety of ways. The purpose of this study was to prove that supplementation idebenone (IDB) to the maturation medium can improve the maturation and development of porcine oocytes after heat stress (HS). Porcine cumulus-oocyte complexes (COCs) were cultured in the maturation medium with different concentrations of IDB (0, 0.1, 1 and 10 μM) for 44 hr at either 38.5°C or under the HS conditions. The cumulus oophorus expansion, nuclear maturation and blastocyst rate after parthenogenetic activation (PA) were measured. We found that HS (in vitro maturation 20-24 hr, 42°C) exposure significantly reduced cumulus expansion index and maturation rate of oocytes and the blastocyst rate of PA embryos, while IDB supplementation significantly improved oocyte maturation and development to the blastocysts stage after PA. Moreover, the addition of IDB decreased the intracellular level of ROS and increased GSH content, hence enhancing the antioxidant capacity of oocytes under HS. Meanwhile, IDB treatment also obviously improved the mitochondrial membrane potential and ATP synthesis of oocytes under HS conditions. Furthermore, IDB treatment increased the expression of GDF9 and BMP15 in IVM oocytes which attribute to improve the quality and outcome of IVM oocytes and the development competence of PA embryos in pigs. In summary, we demonstrated that IDB supplementation into the maturation medium exerted protective effects and improved the ability of maturation and developmental competence of porcine oocytes exposed to HS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/rda.14080 | DOI Listing |
Front Cell Dev Biol
January 2025
Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation and embryonic development. Conventionally, antioxidants have been applied systems to improve oocyte maturation and blastocyst rates. Formononetin (FMN) is a flavonoid that has been shown to have various pharmacological effects, including antioxidants.
View Article and Find Full Text PDFTheriogenology
January 2025
University of Murcia Dept. Physiology, Murcia, Spain; International Excellence Campus for Higher Education and Research "Campus Mare Nostrum" and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain. Electronic address:
Theriogenology
January 2025
Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133000, China. Electronic address:
Follicular fluid extracellular vesicles are beneficial for in vitro oocyte maturation and development; however, their effect on the expression profiles of oocyte microRNAs (miRNAs) and the roles of related miRNAs are unknown. In this study, we aimed to investigate miRNA expression in mature oocytes cultured in follicular fluid extracellular vesicles and the effect of miRNA-125a (miR-125a) on oocyte maturation. The expression profiles of the miRNAs were determined by microRNA sequencing, followed by target gene prediction analysis.
View Article and Find Full Text PDFReprod Domest Anim
January 2025
College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China.
Oocyte quality is crucial for determining the subsequent embryo developmental capacity and reproductive outcomes. However, aging is detrimental to oocyte quality. Previous studies have demonstrated that soy isoflavones have positive effects on the reproductive performance of female pigs.
View Article and Find Full Text PDFSci China Life Sci
January 2025
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!