The winter fog/haze events in northeastern Pakistan and surrounding regions of India are often mixed with pollutants to form smog, and consequently damage human health and hampers daily life in the form of fatalities through road accidents, road blockages, and flight delays. The persistent anti-cyclonic conditions can further trigger the temperature inversion and prolong the smog event from days to weeks. The present study provides characteristics and lasting mechanisms of two persistent winter fog events (2016-2017) in Lahore, Pakistan, by using the fifth generation of European Center for Medium-Range Weather Forecast (ECMWF) ERA5 reanalysis data and National Oceanic and Atmospheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model simulated with Global Data Assimilation System (GDAS) meteorological data. The results showed the presence of strong low-level anti-cyclonic circulations with wind speed less than 1.5 m/s from November to January over Eastern Punjab for two foggy winter seasons. The deep inversion during the fog events was observed that prevented the natural ventilation of air in the upper atmosphere and ultimately the smoke and heavy pollutant accumulated in the lower atmosphere. Furthermore, high relative humidity greater than 83% near the ground indicates a high condensation rate for water vapors to form fog near the ground. The analysis of the NOAA HYSPLIT trajectory model at different vertical heights revealed that smoke from stubble crop burning in the first week of November 2017 in Punjab and Haryana mixed with fog under favorable stable conditions that lead to intense smog over Lahore. This study will help to understand and to develop a forecasting mechanism of fog events by characterizing the meteorological conditions of the study area and to minimize the adverse impacts of smog on public health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-021-09674-y | DOI Listing |
BMC Geriatr
January 2025
Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Objectives: Freezing of Gait (FOG) is one of the disabling symptoms in patients with Parkinson's Disease (PD). While it is difficult to early detect because of the sporadic occurrence of initial freezing events. Whether the characteristic of gait impairments in PD patients with FOG during the 'interictal' period is different from that in non-FOG patients is still unclear.
View Article and Find Full Text PDFBiomedicines
December 2024
Unit of Epidemiology & Statistical Medicine, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy.
: While post-acute COVID-19 syndrome is well known and extensively studied, the post-acute COVID vaccination syndrome (PACVS) is a more recent nosological entity that is poorly defined at the immunopathological level, although it shares many symptoms with the sequelae of viral infections. : This single-center retrospective study reports a case series of 17 subjects vaccinated with mRNA or adenoviral vector vaccines who were healthy before vaccination and had never been infected with SARS-CoV-2 but who presented with symptoms similar to PACVS for a median time of 20 months (min 4, max 32). The medical records of all patients referred to our outpatient clinic over a one-year period were retrospectively analyzed.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Biomedical Engineering, Meybod University, Meybod, Iran.
Purpose: A debilitating and poorly understood symptom of Parkinson's disease (PD) is freezing of gait (FoG), which increases the risk of falling. Clinical evaluations of FoG, relying on patients' subjective reports and manual examinations by specialists, are unreliable, and most detection methods are influenced by subject-specific factors.
Method: To address this, we developed a novel algorithm for detecting FoG events based on movement signals.
Trends Immunol
January 2025
Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Core Center Heidelberg, 69120 Heidelberg, Germany. Electronic address:
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment but are frequently associated with immune-related adverse events (irAEs). This article offers a novel synthesis of findings from both preclinical and clinical studies, focusing on the molecular mechanisms driving irAEs across diverse organ systems. It examines key immune cells, such as T cell subsets and myeloid cells, which are instrumental in irAE pathogenesis, alongside an in-depth analysis of cytokine signaling [interleukin (IL)-6, IL-17, IL-4), interferon γ (IFN-γ), IL-1β, tumor necrosis factor α (TNF-α)], integrin-mediated interactions [integrin subunits αITGA)4 and ITGB7], and microbiome-related factors that contribute to irAE pathology.
View Article and Find Full Text PDFFront Neurol
November 2024
Caring Medical Florida, Fort Myers, FL, United States.
Ligamentous cervical instability, especially ligamentous upper cervical instability, can be the missing structural cause and/or co-morbidity for many chronic disabling brain and systemic body symptoms and diagnoses. Due to the forward head-facedown lifestyle from excessive computer and cell phone usage, the posterior ligament complex of the cervical spine undergoes a slow stretch termed "creep" which can, over time, lead to cervical instability and a breakdown of the cervical curve. As this degenerative process continues, the cervical curve straightens and ultimately becomes kyphotic, a process called cervical dysstructure; simultaneously, the atlas (C1) moves forward, both of which can lead to encroachment of the structures in the carotid sheath, especially the internal jugular veins and vagus nerves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!