AI Article Synopsis

  • Recent advances in understanding ependymomas have highlighted gaps in knowledge about their molecular evolution, particularly during tumor recurrence.
  • A detailed analysis of tumor samples from a 19-year-old patient who experienced multiple recurrences revealed significant genetic diversity and an evolving mutation landscape, emphasizing the complexity of the disease.
  • Notably, the gene ADGRL3 was consistently mutated across all tumor samples in this case, indicating its potential role in ependymoma progression, while lower levels of ADGRL3 expression were linked to poorer survival outcomes in other patients.

Article Abstract

Although there have been recent advances in the molecular pathology of ependymomas, little is known about the underlying molecular evolution during its development. Here, we assessed the clinical, pathological and molecular evolutionary process of ependymoma recurrence in a 9-year-old patient who had seven recurrences of supratentorial ependymoma and died from intracranial multiregional recurrences at the age of 19 years old. Whole-genome sequencing (WGS) of 7 tumor samples (1 primary and 6 subsequent recurrent tumors) was performed to elucidate the mutation landscape and identify potential driver mutations for tumor evolution. The genetic profiles of the seven tumor specimens showed significant heterogeneity and suggested a highly branched evolutionary pattern. The mutational signatures and chromothripsis changed with treatments. Strikingly, adhesion G protein-coupled receptor L3 (ADGRL3, also known as Latrophilins 3, LPNH3) was found to be consistently mutated during the entire disease process. However, Sanger sequencing of other 78 ependymoma patients who underwent surgery at our institution showed no genetic alteration of ADGRL3, as found in the present case. The mRNA levels of ADGRL3 were significantly lower in ependymomas (n = 36), as compared with normal brain tissue (n = 3). Grade III ependymomas had the lowest ADGRL3 expression. Moreover, ependymomas with lower mRNA level of ADGRL3 had shorter overall survival. Our findings, therefore, demonstrate a rare evolutionary process of ependymoma involving ADGRL3.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41374-021-00721-3DOI Listing

Publication Analysis

Top Keywords

driver mutations
8
evolutionary process
8
process ependymoma
8
adgrl3
7
ependymoma
5
mutations adgrl3
4
adgrl3 involved
4
involved evolution
4
evolution ependymoma
4
ependymoma advances
4

Similar Publications

Clonal haematopoiesis of indeterminate potential and risk of microvascular complications among individuals with type 2 diabetes: a cohort study.

Diabetes

January 2025

Department of Big Data in Health Science, Zhejiang University School of Public Health and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Clonal haematopoiesis of indeterminate potential (CHIP) is associated with macrovascular diseases, including coronary artery disease and stroke. However, the effects of CHIP on microvascular complication have not been evaluated in individuals with type 2 diabetes (T2D). This study included 20,712 T2D participants without prevalent diabetic microvascular complication (DMCs) and hematologic malignancy at baseline.

View Article and Find Full Text PDF

Cancer is a complex disease driven by mutations in the genes that play critical roles in cellular processes. The identification of cancer driver genes is crucial for understanding tumorigenesis, developing targeted therapies and identifying rational drug targets. Experimental identification and validation of cancer driver genes are time-consuming and costly.

View Article and Find Full Text PDF

Distinctive role of mutations in distant metastatic thyroid cancer.

Chin J Cancer Res

December 2024

Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.

Objective: This study investigated the clinical significance of mutations in patients with distant metastatic follicular cell-derived thyroid cancer (FDTC).

Methods: This study included 310 Chinese patients with distant metastatic FDTC. We analyzed the interactions between mutations and other gene alterations and compared the clinicopathological characteristics of patients with pathogenic (P) or likely pathogenic (LP) mutations (n=9), other gene alterations (n=253), and no gene alterations (n=37).

View Article and Find Full Text PDF

[Savolitinib Induced Pathological Complete Response in Non-small Cell Lung Cancer with MET Amplification: A Case Report].

Zhongguo Fei Ai Za Zhi

November 2024

Department of Pulmonary Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300000, China.

Mesenchymal-epithelial transition factor (MET) gene mutation is a large class of mutations commonly seen in non-small cell lung cancer (NSCLC). MET mutation includes subtypes such as MET exon 14 skipping mutation (METex14m) and MET amplification (METamp). For advanced NSCLC with METex14m, Savolitinib has a high sensitivity as a member of tyrosine kinase inhibitors (TKIs).

View Article and Find Full Text PDF

Background: The use of tumor-infiltrating T lymphocytes (TIL) that recognize cancer neoantigens has led to lasting remissions in metastatic melanoma and certain cases of metastatic epithelial cancer. For the treatment of the latter, selecting cells for therapy typically involves laborious screening of TIL for recognition of autologous tumor-specific mutations, detected through next-generation sequencing of freshly resected metastatic tumors. Our study explored the feasibility of using archived formalin-fixed, paraffin-embedded (FFPE) primary tumor samples for cancer neoantigen discovery, to potentially expedite this process and reduce the need for resections normally required for tumor sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!