Nutrient scarcity is pervasive for natural microbial communities, affecting species reproduction and co-existence. However, it remains unclear whether there are general rules of how microbial species abundances are shaped by biotic and abiotic factors. Here we show that the ribosomal RNA gene operon (rrn) copy number, a genomic trait related to bacterial growth rate and nutrient demand, decreases from the abundant to the rare biosphere in the nutrient-rich coastal sediment but exhibits the opposite pattern in the nutrient-scarce pelagic zone of the global ocean. Both patterns are underlain by positive correlations between community-level rrn copy number and nutrients. Furthermore, inter-species co-exclusion inferred by negative network associations is observed more in coastal sediment than in ocean water samples. Nutrient manipulation experiments yield effects of nutrient availability on rrn copy numbers and network associations that are consistent with our field observations. Based on these results, we propose a "hunger games" hypothesis to define microbial species abundance rules using the rrn copy number, ecological interaction, and nutrient availability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748817 | PMC |
http://dx.doi.org/10.1038/s41467-021-27857-6 | DOI Listing |
Sci Total Environ
December 2024
Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou 310058, China. Electronic address:
Soil microbial life-history strategies, as indicated by rRNA operon (rrn) copy numbers, strongly influence agro-ecosystem functioning. Long-term N fertilization causes strong and lasting changes in soil properties, yet its impact on microbial strategies remains largely unexplored. Using long-term field experiments across three agro-ecosystems, we consistently found that N fertilization strongly decreased soil C: N ratio and pH, further increasing the community-level rrn copy number, including both average rrn copy number and total 16S rRNA copy number.
View Article and Find Full Text PDFMicrobiol Res
December 2024
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China. Electronic address:
Soybean root rot, caused by soil-borne pathogens such as Fusarium oxysporum, frequently occurs in Northeast China and leads to a decline in soil health and becoming a bottleneck for soybean yield in the region. To address this issue, applying beneficial microorganisms and altering soil microbial community structure have become effective strategies. In this study, the 90-day soybean pot experiment was conducted to explore the assembly process and life strategy selection of bacterial communities in the rhizosphere of healthy (inoculated with Funneliformis mosseae, F group and treated with Pseudomonas putida, P group) and diseased (inoculated with F.
View Article and Find Full Text PDFJ Hazard Mater
September 2024
School of Environment, Tsinghua University, Beijing 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
Biostimulation (providing favorable environmental conditions for microbial growth) and bioaugmentation (introducing exogenous microorganisms) are effective approaches in the bioremediation of petroleum-contaminated soil. However, uncertainty remains in the effectiveness of these two approaches in practical application. In this study, we constructed mesocosms using petroleum hydrocarbon-contaminated soil.
View Article and Find Full Text PDFImeta
June 2024
State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Hulunber Grassland Ecosystem National Observation and Research Station, Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China.
We investigated soil bacterial and fungal communities, constructed co-occurrence networks, and estimated bacterial traits along a gradient of nitrogen (N) input. The results showed that soil bacterial co-occurrence networks complexity decreased with increasing N input. The ratio of negative to positive cohesion decreased with increasing N input, suggesting the declined competitive but strengthened cooperative interactions.
View Article and Find Full Text PDFISME J
January 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!