Shortcuts to adiabaticity for open systems in circuit quantum electrodynamics.

Nat Commun

Tencent Quantum Laboratory, Tencent, 518057, Shenzhen, Guangdong, China.

Published: January 2022

Shortcuts to adiabaticity are powerful quantum control methods, allowing quick evolution into target states of otherwise slow adiabatic dynamics. Such methods have widespread applications in quantum technologies, and various shortcuts to adiabaticity protocols have been demonstrated in closed systems. However, realizing shortcuts to adiabaticity for open quantum systems has presented a challenge due to the complex controls in existing proposals. Here, we present the experimental demonstration of shortcuts to adiabaticity for open quantum systems, using a superconducting circuit quantum electrodynamics system. By applying a counterdiabatic driving pulse, we reduce the adiabatic evolution time of a single lossy mode from 800 ns to 100 ns. In addition, we propose and implement an optimal control protocol to achieve fast and qubit-unconditional equilibrium of multiple lossy modes. Our results pave the way for precise time-domain control of open quantum systems and have potential applications in designing fast open-system protocols of physical and interdisciplinary interest, such as accelerating bioengineering and chemical reaction dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748912PMC
http://dx.doi.org/10.1038/s41467-021-27900-6DOI Listing

Publication Analysis

Top Keywords

shortcuts adiabaticity
20
adiabaticity open
12
open quantum
12
quantum systems
12
circuit quantum
8
quantum electrodynamics
8
quantum
7
shortcuts
5
systems
5
open
4

Similar Publications

We present a technique for efficiently transitioning a quantum system from an initial to a final stationary state in less time than is required by an adiabatic (quasistatic) process. Our approach makes use of Nelson's stochastic quantization, which represents the quantum system as a classical Brownian process. Thanks to this mathematical analogy, known protocols for classical overdamped systems can be translated into quantum protocols.

View Article and Find Full Text PDF

A spin filter is a device that allows only a single spin state to pass, equivalent to a polarizing filter for a beam of light. Here, taking inspiration from shortcuts to adiabaticity, I demonstrate that the potential landscape of a typical quantum point contact can be tuned to act as a two terminal spin filter or to generate a spin-polarized beam. The effect presented is sufficiently robust that rough engineering yields a significant effect, as demonstrated by experiments on asymmetrically biased quantum point contacts in InAs quantum wells.

View Article and Find Full Text PDF

The approach of shortcuts to adiabaticity enables the effective execution of adiabatic dynamics in quantum information processing with enhanced speed. Owing to the inherent trade-off between dynamical speed and the cost associated with the transitionless driving field, executing arbitrarily fast operations becomes impractical. To understand the accurate interplay between speed and energetic cost in this process, we propose theoretically and verify experimentally a new trade-off, which is characterized by a tightly optimized bound within s-parametrized phase spaces.

View Article and Find Full Text PDF

We propose and demonstrate a short and broadband silicon mode-conversion polarization splitter-rotator (PSR) consisting of a mode-conversion taper and an adiabatic coupler-based mode sorter both optimized by adiabaticity engineering (AE). AE is used to optimize the distribution of adiabaticity parameter over the length of the PSR, providing shortcut to adiabaticity at a shorter device length. The total length of the PSR is 85 µm.

View Article and Find Full Text PDF

We implement variational shortcuts to adiabaticity for optical pulse compression in an active nonlinear Kerr medium with distributed amplification and spatially varying dispersion and nonlinearity. Starting with the hyperbolic secant ansatz, we employ a variational approximation to systematically derive dynamical equations, establishing analytical relationships linking the amplitude, width, and chirp of the pulse. Through the inverse engineering approach, we manipulate the distributed gain/loss, nonlinearity and dispersion profiles to efficiently compress the optical pulse over a reduced distance with high fidelity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!