AI Article Synopsis

  • - Ketamine shows quick and lasting antidepressant effects in treatment-resistant depression (TRD) patients, but how it works is still unclear.
  • - The study compared blood samples from TRD patients and healthy controls to analyze gene expression before and after ketamine treatment, finding an interferon signaling pathway activation in TRD patients at baseline.
  • - Responders to ketamine exhibited specific gene upregulation, but the study didn't find changes indicating an anti-inflammatory effect, suggesting more research is needed to understand the immune system's role in ketamine's effects.

Article Abstract

Ketamine has rapid and sustained antidepressant effects in patients with treatment-resistant depression (TRD). However, the underlying mechanisms of action are not well understood. There is increasing evidence that TRD is associated with a pro-inflammatory state and that ketamine may inhibit inflammatory processes. We thus investigated whole blood transcriptional profiles related to TRD and gene expression changes associated with treatment response to ketamine. Whole blood was collected at baseline (21 healthy controls [HC], 26 patients with TRD) and then again in patients with TRD 24 hours following a single intravenous infusion of ketamine (0.5 mg/kg). We performed RNA-sequencing and analyzed (a) baseline transcriptional profiles between patients with TRD and HC, (b) responders vs. non-responders before ketamine treatment, and (c) gene expression signatures associated with clinical improvement. At baseline, patients with TRD compared to HC showed a gene expression signature indicative of interferon signaling pathway activation. Prior to ketamine administration, the metabotropic glutamate receptor gene GRM2 and the ionotropic glutamate receptor gene GRIN2D were upregulated in responders compared to non-responders. Response to ketamine was associated with a distinct transcriptional signature, however, we did not observe gene expression changes indicative of an anti-inflammatory effect. Future studies are needed to determine the role of the peripheral immune system in the antidepressant effect of ketamine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748646PMC
http://dx.doi.org/10.1038/s41398-021-01712-0DOI Listing

Publication Analysis

Top Keywords

gene expression
16
patients trd
16
response ketamine
12
ketamine
9
blood transcriptional
8
signatures associated
8
transcriptional profiles
8
expression changes
8
glutamate receptor
8
receptor gene
8

Similar Publications

Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.

View Article and Find Full Text PDF

DCLRE1B as a novel prognostic biomarker associated with immune infiltration: a pancancer analysis.

Sci Rep

December 2024

Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.

The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.

View Article and Find Full Text PDF

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!