Background: Muscular dystrophies (MDs) are inherited diseases in which a dysregulation of the immune response exacerbates disease severity and are characterized by infiltration of various immune cell types leading to muscle inflammation, fiber necrosis and fibrosis. Immunosuppressive properties have been attributed to mesenchymal stem cells (MSCs) that regulate the phenotype and function of different immune cells. However, such properties were poorly considered until now for adult stem cells with myogenic potential and advanced as possible therapeutic candidates for MDs. In the present study, we investigated the immunoregulatory potential of human MuStem (hMuStem) cells, for which we previously demonstrated that they can survive in injured muscle and robustly counteract adverse tissue remodeling.
Methods: The impact of hMuStem cells or their secretome on the proliferative and phenotypic properties of T-cells was explored by co-culture experiments with either peripheral blood mononucleated cells or CD3-sorted T-cells. A comparative study was produced with the bone marrow (BM)-MSCs. The expression profile of immune cell-related markers on hMuStem cells was determined by flow cytometry while their secretory profile was examined by ELISA assays. Finally, the paracrine and cell contact-dependent effects of hMuStem cells on the T-cell-mediated cytotoxic response were analyzed through IFN-γ expression and lysis activity.
Results: Here, we show that hMuStem cells have an immunosuppressive phenotype and can inhibit the proliferation and the cytotoxic response of T-cells as well as promote the generation of regulatory T-cells through direct contact and via soluble factors. These effects are associated, in part, with the production of mediators including heme-oxygenase-1, leukemia inhibitory factor and intracellular cell adhesion molecule-1, all of which are produced at significantly higher levels by hMuStem cells than BM-MSCs. While the production of prostaglandin E2 is involved in the suppression of T-cell proliferation by both hMuStem cells and BM-MSCs, the participation of inducible nitric oxide synthase activity appears to be specific to hMuStem cell-mediated one.
Conclusions: Together, our findings demonstrate that hMuStem cells are potent immunoregulatory cells. Combined with their myogenic potential, the attribution of these properties reinforces the positioning of hMuStem cells as candidate therapeutic agents for the treatment of MDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8751303 | PMC |
http://dx.doi.org/10.1186/s13287-021-02681-3 | DOI Listing |
J Neuropathol Exp Neurol
August 2024
Oniris, INRAE, PAnTher, Nantes, France.
We previously reported that human muscle-derived stem cells (hMuStem cells) contribute to tissue repair after local administration into injured skeletal muscle or infarcted heart in immunodeficient rodent models. However, extrapolation of these findings to a clinical context is problematic owing to the considerable differences often seen between in vivo findings in humans versus rodents. Therefore, we investigated whether the muscle regenerative behavior of hMuStem cells is maintained in a clinically relevant transplantation context.
View Article and Find Full Text PDFInt J Biol Macromol
May 2024
Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France.
Stem Cell Res Ther
January 2022
INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France.
Background: Muscular dystrophies (MDs) are inherited diseases in which a dysregulation of the immune response exacerbates disease severity and are characterized by infiltration of various immune cell types leading to muscle inflammation, fiber necrosis and fibrosis. Immunosuppressive properties have been attributed to mesenchymal stem cells (MSCs) that regulate the phenotype and function of different immune cells. However, such properties were poorly considered until now for adult stem cells with myogenic potential and advanced as possible therapeutic candidates for MDs.
View Article and Find Full Text PDFStem Cell Res Ther
May 2018
PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), F-44307, Nantes, France.
Background: Canine MuStem cells have demonstrated regenerative efficacy in a dog model of muscular dystrophy, and the recent characterization of human counterparts (hMuStem) has highlighted the therapeutic potential of this muscle-derived stem cell population. To date, these cells have only been generated in research-grade conditions. However, evaluation of the clinical efficacy of any such therapy will require the production of hMuStem cells in compliance with good manufacturing practices (GMPs).
View Article and Find Full Text PDFMol Ther
February 2018
PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France. Electronic address:
After intra-arterial delivery in the dystrophic dog, allogeneic muscle-derived stem cells, termed MuStem cells, contribute to long-term stabilization of the clinical status and preservation of the muscle regenerative process. However, it remains unknown whether the human counterpart could be identified, considering recent demonstrations of divergent features between species for several somatic stem cells. Here, we report that MuStem cells reside in human skeletal muscle and display a long-term ability to proliferate, allowing generation of a clinically relevant amount of cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!