AI Article Synopsis

  • HIV-1 may use the CR3 protein found on cervical epithelial cells to cross the mucosal barrier, which could be a key pathway for HIV infection in women.
  • The study demonstrates that HIV-1 shows a strong binding affinity to CR3 through specific regions of the protein, relying on certain glycans on the virus's surface for this interaction.
  • Blocking the CR3-HIV-1 interaction with antibodies or other compounds could potentially prevent the transmission of HIV across the cervical epithelium, suggesting new strategies for reducing the risk of infection in women.

Article Abstract

Transmission of HIV across the mucosal surface of the female reproductive tract to engage subepithelial CD4-positive T cells is not fully understood. Cervical epithelial cells express complement receptor 3 (CR3) (integrin αβ or CD11b/CD18). In women, the bacterium Neisseria gonorrhoeae uses CR3 to invade the cervical epithelia to cause cervicitis. We hypothesized that HIV may also use CR3 to transcytose across the cervical epithelia. Here, we show that HIV-1 strains bound with high affinity to recombinant CR3 in biophysical assays. HIV-1 bound CR3 via the I-domain region of the CR3 alpha subunit, CD11b, and binding was dependent on HIV-1 N-linked glycans. Mannosylated glycans on the HIV surface were a high-affinity ligand for the I-domain. Man5 pentasaccharide, representative of HIV N-glycans, could compete with HIV-1 for CR3 binding. Using cellular assays, we show that HIV bound to CHO cells by a CR3-dependent mechanism. Antibodies to the CR3 I-domain or to the HIV-1 envelope glycoprotein blocked the binding of HIV-1 to primary human cervical epithelial (Pex) cells, indicating that CR3 was necessary and sufficient for HIV-1 adherence to Pex cells. Using Pex cells in a Transwell model system, we show that, following transcytosis across an intact Pex cell monolayer, HIV-1 is able to infect TZM-bl reporter cells. Targeting the HIV-CR3 interaction using antibodies, mannose-binding lectins, or CR3-binding small-molecule drugs blocked HIV transcytosis. These studies indicate that CR3/Pex may constitute an efficient pathway for HIV-1 transmission in women and also demonstrate strategies that may prevent transmission via this pathway. In women, the lower female reproductive tract is the primary site for HIV infection. How HIV traverses the epithelium to infect CD4 T cells in the submucosa is ill-defined. Cervical epithelial cells have a protein called CR3 on their surface. We show that HIV-1 binds to CR3 with high affinity and that this interaction is necessary and sufficient for HIV adherence to, and transcytosis across, polarized, human primary cervical epithelial cells. This suggests a unique role for CR3 on epithelial cells in dually facilitating HIV-1 attachment and entry. The HIV-CR3 interaction may constitute an efficient pathway for HIV delivery to subepithelial lymphocytes following virus transmission across an intact cervical epithelial barrier. Strategies with potential to prevent transmission via this pathway are presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749410PMC
http://dx.doi.org/10.1128/mbio.02177-21DOI Listing

Publication Analysis

Top Keywords

cervical epithelial
24
epithelial cells
16
hiv-1
12
cr3
12
pex cells
12
hiv
11
cells
11
complement receptor
8
transcytosis intact
8
cervical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!