Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrospun scaffolds have a 3D fibrous structure that attempts to imitate the extracellular matrix in order to be able to host cells. It has been reported in the literature that controlling fiber surface topography produces varying results regarding cell-scaffold interactions. This review analyzes the relevant literature concerning in vitro studies to provide a better understanding of the effect that controlling fiber surface topography has on cell-scaffold interactions. A systematic approach following PRISMA, GRADE, PICO, and other standard methodological frameworks for systematic reviews was used. Different topographic interventions and their effects on cell-scaffold interactions were analyzed. Results indicate that nanopores and roughness on fiber surfaces seem to improve proliferation and adhesion of cells. The quality of the evidence is different for each studied cell-scaffold interaction, and for each studied morphological attribute. The evidence points to improvements in cell-scaffold interactions on most morphologically complex fiber surfaces. The discussion includes an in-depth evaluation of the indirectness of the evidence, as well as the potentially involved publication bias. Insights and suggestions about dose-dependency relationship, as well as the effect on particular cell and polymer types, are presented. It is concluded that topographical alterations to the fiber surface should be further studied, since results so far are promising.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747153 | PMC |
http://dx.doi.org/10.3390/polym14010209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!