A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Odor and Constituent Odorants of HDPE-Lignin Blends of Different Lignin Origin. | LitMetric

The still-rising global demand for plastics warrants the substitution of non-renewable mineral oil-based resources with natural products as a decisive step towards sustainability. Lignin is one of the most abundant natural polymers and represents an ideal but hitherto highly underutilized raw material to replace petroleum-based resources. In particular, the use of lignin composites, especially polyolefin-lignin blends, is currently on the rise. In addition to specific mechanical property requirements, a challenge of implementing these alternative polymers is their heavy odor load. This is especially relevant for lignin, which exhibits an intrinsic odor that limits its use as an ingredient in blends intended for high quality applications. The present study addressed this issue by undertaking a systematic evaluation of the odor properties and constituent odorants of commercially available lignins and related high-density polyethylene (HDPE) blends. The potent odors of the investigated samples could be attributed to the presence of 71 individual odorous constituents that originated primarily from the structurally complex lignin. The majority of them was assignable to six main substance classes: carboxylic acids, aldehydes, phenols, furan compounds, alkylated 2-cyclopenten-1-ones, and sulfur compounds. The odors were strongly related to both the lignin raw materials and the different processes of their extraction, while the production of the blends had a lower but also significant influence. Especially the investigated soda lignin with - and -like odors was highly different in its odorant composition compared to lignins resulting from the sulfurous kraft process predominantly characterized by and odors. These observations highlight the importance of sufficient purification of the lignin raw material and the need for odor abatement procedures during the compounding process. The molecular elucidation of the odorants causing the strong odor represents an important procedure to develop odor reduction strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747089PMC
http://dx.doi.org/10.3390/polym14010206DOI Listing

Publication Analysis

Top Keywords

constituent odorants
8
lignin
8
raw material
8
lignin raw
8
odor
7
blends
5
odor constituent
4
odorants hdpe-lignin
4
hdpe-lignin blends
4
blends lignin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!