Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The still-rising global demand for plastics warrants the substitution of non-renewable mineral oil-based resources with natural products as a decisive step towards sustainability. Lignin is one of the most abundant natural polymers and represents an ideal but hitherto highly underutilized raw material to replace petroleum-based resources. In particular, the use of lignin composites, especially polyolefin-lignin blends, is currently on the rise. In addition to specific mechanical property requirements, a challenge of implementing these alternative polymers is their heavy odor load. This is especially relevant for lignin, which exhibits an intrinsic odor that limits its use as an ingredient in blends intended for high quality applications. The present study addressed this issue by undertaking a systematic evaluation of the odor properties and constituent odorants of commercially available lignins and related high-density polyethylene (HDPE) blends. The potent odors of the investigated samples could be attributed to the presence of 71 individual odorous constituents that originated primarily from the structurally complex lignin. The majority of them was assignable to six main substance classes: carboxylic acids, aldehydes, phenols, furan compounds, alkylated 2-cyclopenten-1-ones, and sulfur compounds. The odors were strongly related to both the lignin raw materials and the different processes of their extraction, while the production of the blends had a lower but also significant influence. Especially the investigated soda lignin with - and -like odors was highly different in its odorant composition compared to lignins resulting from the sulfurous kraft process predominantly characterized by and odors. These observations highlight the importance of sufficient purification of the lignin raw material and the need for odor abatement procedures during the compounding process. The molecular elucidation of the odorants causing the strong odor represents an important procedure to develop odor reduction strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747089 | PMC |
http://dx.doi.org/10.3390/polym14010206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!