Flexural Behavior of a Novel Textile-Reinforced Polymer Concrete.

Polymers (Basel)

Department of Civil, Construction & Environmental Engineering, University of New Mexico, MSC01 1070, Albuquerque, NM 87131, USA.

Published: January 2022

Textile reinforced concrete (TRC) has gained attention from the construction industry due to its light weight, high tensile strength, design flexibility, corrosion resistance, and remarkably long service life. Some structural applications that utilize TRC components include precast panels, structural repair, waterproofing elements, and façades. TRC is produced by incorporating textile fabrics into thin cementitious concrete panels. Premature debonding between the textile fabric and concrete due to improper cementitious matrix impregnation of the fibers was identified as a failure-governing mechanism. To overcome this performance limitation, in this study, a novel type of TRC is proposed by replacing the cement binder with a polymer resin to produce textile reinforced polymer concrete (TRPC). The new TRPC is created using a fine-graded aggregate, methyl methacrylate polymer resin, and basalt fiber textile fabric. Four different specimen configurations were manufactured by embedding 0, 1, 2, and 3 textile layers in concrete. Flexural performance was analyzed and compared with reference TRC specimens with similar compressive strength and reinforcement configurations. Furthermore, the crack pattern intensity was determined using an image processing technique to quantify the ductility of TRPC compared with conventional TRC. The new TRPC improved the moment capacity compared with TRC by 51%, 58%, 59%, and 158%, the deflection at peak load by 858%, 857%, 3264%, and 3803%, and the toughness by 1909%, 3844%, 2781%, and 4355% for 0, 1, 2, and 3 textile layers, respectively. TRPC showed significantly improved flexural capacity, superior ductility, and substantial plasticity compared with TRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747312PMC
http://dx.doi.org/10.3390/polym14010176DOI Listing

Publication Analysis

Top Keywords

polymer concrete
8
textile reinforced
8
trc
8
textile fabric
8
polymer resin
8
textile layers
8
trpc improved
8
compared trc
8
textile
7
concrete
6

Similar Publications

Environmental and Economic LCA Comparison of Flexural Strengthening Solutions for a Reinforced Concrete Beam.

Materials (Basel)

November 2024

Civil Engineering Research and Innovation for Sustainability (CERIS), Department of Civil Engineering, Architecture and Environment, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.

The construction sector is one of the largest creators and distributors of wealth, contributing to economic growth worldwide. However, this economic growth comes together with very high environmental impacts. Thus, rehabilitation solutions that can adapt the current building stock to today's structural requirements are needed, increasing structural safety, while avoiding the production of demolition waste and the extraction of virgin raw materials, hence lowering the construction sector's environmental impacts.

View Article and Find Full Text PDF

In this study, the properties of ultra-high-performance concrete (UHPC) were enhanced by adding modified polyvinyl alcohol (PVA) fibers. The specimens with different curing ages were evaluated in various aspects to investigate the effects of different dosages, lengths, and surface treatments of PVA fibers on the performance of UHPC. The performance was compared with that of steel fiber-reinforced UHPC with the same ratio and multiple dosages.

View Article and Find Full Text PDF

The circular economic approach in polymer composite research has gained acceptance for offering low-cost, high-performance solutions. Sawdust-derived composites have drawn interest as alternatives in concrete and composite fabrication, addressing housing shortages and resource depletion. Sawdust concrete (SDC) and sawdust polymer composites (SDPC) are key areas under investigation, with SDC additionally aiding in carbon reduction in building materials.

View Article and Find Full Text PDF

Effect of Density of Acrylic Acid Ester on Sulfonate-Modified Polycarboxylate Superplasticizers on Cementitious Systems.

Polymers (Basel)

November 2024

Guizhou Provincial Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.

To tackle high viscosity in fresh concretes, especially high-performance concrete, the research of polycarboxylate superplasticizers (PCEs) is relevant. By designing the molecular structure of PCEs, problems such as pumping difficulties in high viscosity of high-performance concrete can be solved. Therefore, in this paper, a suite of novel viscosity reducing PCEs containing sulfonic acid groups and different acrylate densities were synthesized on the basis of inventive molecular structure design, and characterized to determine the predicted structure.

View Article and Find Full Text PDF

Nowadays, due to the structural advantages gained by combining three different materials' properties, columns made of carbon-fiber reinforced polymer (CFRP)-confined concrete with inner steel tube have received researchers' interest. This article presents the nonlinear finite element analysis and multiple machine learning (ML) model-based study on the behavior of round corner rectangular CFRP-confined concrete short columns reinforced by the inner high-strength elliptical steel tube under the axial load. The reliability of the proposed nonlinear finite element model was verified against the existing experimental investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!