Continuous Fixed-Bed Column Studies on Congo Red Dye Adsorption-Desorption Using Free and Immobilized Leaf .

Polymers (Basel)

Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.

Published: December 2021

The adsorption of Congo red (CR), an azo dye, from aqueous solution using free and immobilized agricultural waste biomass of (lotus) has been studied separately in a continuous fixed-bed column operation. The leaf powder adsorbent was immobilized in various polymeric matrices and the maximum decolorization efficiency (83.64%) of CR occurred using the polymeric matrix sodium silicate. The maximum efficacy (72.87%) of CR dye desorption was obtained using the solvent methanol. Reusability studies of free and immobilized adsorbents for the decolorization of CR dye were carried out separately in three runs in continuous mode. The % color removal and equilibrium dye uptake of the regenerated free and immobilized adsorbents decreased significantly after the first cycle. The decolorization efficiencies of CR dye adsorption were 53.66% and 43.33%; equilibrium dye uptakes were 1.179 mg g and 0.783 mg g in the third run of operation with free and immobilized adsorbent, respectively. The column experimental data fit very well to the Thomas and Yoon-Nelson models for the free and immobilized adsorbent with coefficients of correlation R ≥ 0.976 in various runs. The study concludes that free and immobilized can be efficiently used for the removal of CR from synthetic and industrial wastewater in a continuous flow mode. It makes a substantial contribution to the development of new biomass materials for monitoring and remediation of toxic dye-contaminated water resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747315PMC
http://dx.doi.org/10.3390/polym14010054DOI Listing

Publication Analysis

Top Keywords

free immobilized
28
continuous fixed-bed
8
fixed-bed column
8
congo red
8
immobilized
8
immobilized adsorbents
8
equilibrium dye
8
immobilized adsorbent
8
dye
7
free
7

Similar Publications

Despite the outstanding progress in photonic sensor devices, a major limitation for its application as label-free biosensors for biomedical analysis lies in the surface biofunctionalization step, that is, the reliable immobilization of the biorecognition element onto the sensor surface. Here, we report the integration of bottom-up synthesized nanoporous graphene onto bimodal waveguide interferometric biosensors as an atomically precise biofunctionalization scaffold. This combination leverages the high sensitivity of bimodal waveguide interferometers and the large functional surface area of nanoporous graphene to create highly sensitive, selective, and robust biosensors for the direct immunoassay detection of C-reactive protein (CRP), an inflammatory biomarker widely used in the clinical diagnosis of infections and sepsis.

View Article and Find Full Text PDF

Chest imaging in children presents unique challenges due to varying requirements across age groups. For chest radiographs, achieving optimal images often involves careful positioning and immobilisation techniques. Antero-posterior projections are easier to obtain in younger children, while lateral decubitus radiographs are sometimes used when expiratory images are difficult to obtain and for free air exclusion.

View Article and Find Full Text PDF

Facile preparation of iridium-based AIE polymer dots for sensitive electrochemiluminescence immunoassay of CD44 protein.

Anal Chim Acta

March 2025

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

The development of aggregation-induced emission (AIE) luminophores is a fascinating and promising topic in electrochemiluminescence (ECL) bioanalysis. Herein, the AIE-active but water-insoluble [Ir(bt)₂(acac)] (bt = 2-phenylbenzothiazole, acac = acetylacetonate) was encapsulated within poly(styrene-maleic anhydride) (PSMA) using a simple nanoprecipitation method. This encapsulation strategy could effectively limit the free motion of Ir(bt)₂(acac) and trigger the aggregation-induced electrochemiluminescence (AIECL) effect.

View Article and Find Full Text PDF

Cofactor-directed co-immobilization of dual-enzyme on functionalized montmorillonite with enhanced catalytic performance.

Int J Biol Macromol

January 2025

School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.

Recently, multi-enzyme cascade catalysis has attracted increasing attention due to the advantages of integrating multiple enzymes, few side reactions and high catalytic efficiency. Herein, a novel dual-enzyme cascade system (GOx-FMt-HRP) was developed through cofactor-directed orientational co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto functional montmorillonite (FMt). The presented method realizes the reconstitution of cofactors and apo-enzymes (enzymes without cofactors), which enables enzymes to be immobilized in specific orientations on the support, thereby effectively reducing changes in their conformation.

View Article and Find Full Text PDF

Raman spectra of pyromorphite, vanadinite and mimetite at high pressures and high temperatures.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 Guizhou, China. Electronic address:

High-pressure and high-temperature Raman spectra of natural pyromorphite, vanadinite and mimetite were measured up to 11 GPa and 973 K, respectively. No phase transition was observed within the temperature and pressure ranges in this study. Raman modes for pyromorphite, vanadinite and mimetite vary with temperature or pressure linearly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!