A low-temperature spray deposition synthesis was developed to prepare locally hexagonally ordered mesoporous titania films with polycrystalline anatase pore walls in an evaporation-induced self-assembly process. The titania film preparation procedure is conducted completely at temperatures below 50 °C. The effects of spray time, film thickness, synthesis time prior to spray deposition, and aging time at high relative humidity after deposition on the atomic arrangement and the mesoorder of the mesoporous titania were studied. We find the crystallite size to depend on both the synthesis time and aging time of the films, where longer times result in larger crystallites. Using the photocatalytic activity of titania, the structure-directing agent is removed with UV radiation at 43-46 °C. The capability of the prepared films to remove the polymer template increased with longer synthesis and aging times due to the increased crystallinity, which increases the photocatalytic efficiency of the titania films. However, with increasingly longer times, the crystallites grow too large for the mesoorder of the pores to be maintained. This work shows that a scalable spray coating method can be used to prepare locally ordered mesoporous polycrystalline titania films by judiciously tuning the synthesis parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746936PMC
http://dx.doi.org/10.3390/molecules27010303DOI Listing

Publication Analysis

Top Keywords

titania films
16
spray deposition
12
ordered mesoporous
12
deposition synthesis
8
locally ordered
8
mesoporous polycrystalline
8
polycrystalline titania
8
prepare locally
8
mesoporous titania
8
synthesis time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!