Fungal mycelium cultures are an alternative to natural sources in order to obtain valuable research materials. They also enable constant control and adaptation of the process, thereby leading to increased biomass growth and accumulation of bioactive metabolites. The present study aims to assess the biosynthetic potential of mycelial cultures of six species: , , , , , and . The presence of phenolic acids, amino acids, indole compounds, sterols, and kojic acid in biomass extracts was determined by HPLC. The antioxidant and cytotoxic activities of the extracts and their effects on the inhibition of selected enzymes (tyrosinase and acetylcholinesterase) were also evaluated. The total content of phenolic acids in the extracts ranged from 5.8 () to 114.07 mg/100 g dry weight (d.w.) (). The total content of indole compounds in the extracts ranged from 3.03 () to 11.56 mg/100 g d.w. () and that of ergosterol ranged from 28.15 () to 74.78 mg/100 g d.w. (). Kojic acid was found in the extracts of and . The tested extracts showed significant antioxidant activity. The results suggest that the analyzed mycelial cultures are promising candidates for the development of new dietary supplements or pharmaceutical preparations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746335 | PMC |
http://dx.doi.org/10.3390/molecules27010275 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Post-Graduate Program in Biotechnology, Federal University of Amazonas (UFAM), Manaus, Amazonas, 69067-005, Brazil.
Edible mushrooms have been used as sustainable sources of proteases of industrial interest. The aim of this research was to investigate the influence of different culture media on mycelial growth and the potential of an Amazonian mushroom species, Auricularia fuscosuccinea DPUA 1624, in the biosynthesis of bovine milk coagulant enzymes. The species was cultivated on Sabouraud agar, malt, glucose, and peptone agar, malt extract agar, and glucose and peptone agar, supplemented with yeast extract for mycelial development.
View Article and Find Full Text PDFPLoS One
January 2025
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.
Through their expansive mycelium network, soil fungi alter the physical arrangement and chemical composition of their local environment. This can significantly impact bacterial distribution and nutrient transport and can play a dramatic role in shaping the rhizosphere around a developing plant. However, direct observation and quantitation of such behaviors is extremely difficult due to the opacity and complex porosity of the soil microenvironment.
View Article and Find Full Text PDFPlant Dis
January 2025
University of Florida Tropical Research and Education Center, Plant Pathology, 1615 SE 23rd Way, Homestead, Florida, United States, 33031-3314;
The commercial production of passion fruit is geographically limited (California, Florida, and Hawaii), but the development of cold-tolerant varieties could expand it beyond warm-climate states (Stafne et.al. 2023).
View Article and Find Full Text PDFPlant Dis
January 2025
University of Ghana College of Basic and Applied Sciences, Biotechnology Centre, Accra, Greater Accra, Ghana;
African eggplant (Solanum aethiopicum gilo group) is a nutritious vegetable widely commercialized in Ghana. In the 2021 planting season (May-July), collar rot symptoms were observed on African eggplant on a farm at Domeabra, Legon, and Okumaning in the Central (N5° 48' 11″, W1° 26' 48″), Greater Accra (N5° 39' 34″, W0° 11' 34″) and Eastern (N6° 8' 34″, W0° 55' 59″) regions of Ghana, respectively. Disease incidence was 8-15% in the different farms.
View Article and Find Full Text PDFInt J Food Sci
December 2024
Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa.
The development of alternative proteins derived from fungi-based sources is gaining recognition due to their health benefits and lower environmental impact, compared to traditional animal-based sources. In this study, we investigated the culture conditions for mycelia, focusing on the nutritional requirements and yield optimization using solid surface culture and liquid-state culture methods. Our findings indicate that optimal culture conditions involve glucose as the primary carbon source, with an initial pH of 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!