The transition to a hydrogen economy requires the development of cost-effective methods for purifying hydrogen from CO. In this study, we explore the possibilities of Cu/ZSM-5 as an adsorbent for this purpose. Samples obtained by cation exchange from aqueous solution (AE) and solid-state exchange with CuCl (SE) were characterized by in situ EPR and FTIR, H-TPR, CO-TPD, etc. The AE samples possess mainly isolated Cu cations not adsorbing CO. Reduction generates Cu sites demonstrating different affinity to CO, with the strongest centres desorbing CO at about 350 °C. The SE samples have about twice higher Cu/Al ratios, as one H is exchanged with one Cu cation. Although some of the introduced Cu sites are oxidized to Cu upon contact with air, they easily recover their original oxidation state after thermal treatment in vacuum or under inert gas stream. In addition, these Cu centres regenerate at relatively low temperatures. It is important that water does not block the CO adsorption sites because of the formation of Cu(CO)(HO) complexes. Dynamic adsorption studies show that Cu/ZSM-5 selectively adsorbs CO in the presence of hydrogen. The results indicate that the SE samples are very perspective materials for purification of H from CO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746636PMC
http://dx.doi.org/10.3390/molecules27010096DOI Listing

Publication Analysis

Top Keywords

purification hydrogen
4
hydrogen cu/zsm-5
4
cu/zsm-5 adsorbents
4
adsorbents transition
4
transition hydrogen
4
hydrogen economy
4
economy requires
4
requires development
4
development cost-effective
4
cost-effective methods
4

Similar Publications

Exploring the interaction mechanism between the programmed death-ligand 1 protein and scutellarin via multi-spectroscopy and computer simulation.

Int J Biol Macromol

January 2025

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. Electronic address:

The programmed death-ligand 1 (PD-L1) protein plays a key role in immune responses. Scutellarin (SCU), as a flavonoid, has a variety of bioactivities. In this study, the human PD-L1 was obtained by expression and purification, and the interaction mechanisms between PD-L1 and SCU were revealed through multi-spectroscopy and computer simulation.

View Article and Find Full Text PDF

Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.

View Article and Find Full Text PDF

Background: Because the process is cost-effective, microbial pectinase is used in juice clearing. The isolation, immobilization, and characterization of pectinase from Aspergillus nidulans (Eidam) G. Winter (AUMC No.

View Article and Find Full Text PDF

The urgent need to address escalating environmental pollution and energy management challenges has underscored the importance of developing efficient, cost-effective, and multifunctional electrocatalysts. To address these issues, we developed an eco-friendly, cost-effective, and multifunctional electrocatalyst a solvothermal synthesis approach. Due to the merits of the ideal synthesis procedure, the FeCoHS@NF electrocatalyst exhibited multifunctional activities, like OER, HER, OWS, UOR, OUS, and overall alkaline seawater splitting, with required potentials of 1.

View Article and Find Full Text PDF

Microplastics (MPs) are emerging pollutants that pose significant risks to ecosystems due to their inherent toxicity, capacity to accumulate various pollutants, and potential for synergistic impacts. Given these concerns, the focus of this research is on the critical need for effective MPs removal from aquatic environments. Using BBD method, this study aimed to identify the key parameters affecting the removal of MPs by algal biomass from aqueous solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!