NaVO (η-NaVO) has been synthesized via solid-state reaction in an evacuated sealed silica ampoule and tested as electroactive material for Na-ion batteries. According to powder X-ray diffraction, electron diffraction and atomic resolution scanning transmission electron microscopy, NaVO adopts a monoclinic structure consisting of layers of corner- and edge-sharing VO tetragonal pyramids and VO tetrahedra with Na cations positioned between the layers, and can be considered as sodium vanadium(IV,V) oxovanadate NaVO(VO). Behavior of NaVO as a positive and negative electrode in Na half-cells was investigated by galvanostatic cycling against metallic Na, synchrotron powder X-ray diffraction and electron energy loss spectroscopy. Being charged to 4.6 V vs. Na/Na, almost 3 Na can be extracted per NaVO formula, resulting in electrochemical capacity of ~60 mAh g. Upon discharge below 1 V, NaVO uptakes sodium up to Na:V = 1:1 ratio that is accompanied by drastic elongation of the separation between the layers of the VO tetrahedra and VO tetragonal pyramids and volume increase of about 31%. Below 0.25 V, the ordered layered NaVO structure transforms into a rock-salt type disordered structure and ultimately into amorphous products of a conversion reaction at 0.1 V. The discharge capacity of 490 mAh g delivered at first cycle due to the conversion reaction fades with the number of charge-discharge cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747075 | PMC |
http://dx.doi.org/10.3390/molecules27010086 | DOI Listing |
ACS Mater Au
January 2025
Materials Department, University of California Santa Barbara, California 93106, United States.
Of the few weberite-type Na-ion cathodes explored to date, NaFeF exhibits the best performance, with capacities up to 184 mAh/g and energy densities up to 550 Wh/kg reported for this material. However, the development of robust structure-property relationships for this material is complicated by its tendency to form as a mixture of metastable polymorphs, and transform to a lower-energy Na FeF perovskite compound during electrochemical cycling. Our first-principles-guided exploration of Fe-based weberite solid solutions with redox-inactive Mg and Al predicts an enhanced thermodynamic stability of NaMg Fe F as the Mg content is increased, and the = 0.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA.
We propose a new stable three-dimensional (3D) porous and metallic boron nitride anode material, named h-BN, with good ductility for sodium-ion batteries (SIBs). Based on first-principles calculations and a tight-binding model, we demonstrate that the metallicity originates from the synergistic contribution of the p-orbital of the sp-hybridized B and N atoms, while the ductility is due to the unique configurations of B-B and N-N dimers in the structure. More importantly, this boron nitride allotrope exhibits a high reversible capacity of 582.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, P. R. China.
Li-ion and Na-ion batteries are promising systems for powering electric vehicles and grid storage. Layered 3d transition metal oxides ATMO (A = Li, Na; TM = 3d transition metals; 0 < x ≤ 2) have drawn extensive attention as cathode materials due to their exceptional energy densities. However, they suffer from several technical challenges caused by crystal structure degradation associated with TM ions migration, such as poor cycling stability, inferior rate capability, significant voltage hysteresis, and serious voltage decay.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan.
BMC Plant Biol
January 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Background: The in vitro propagation of halophytes is innovative perspective for sustainable agriculture, conservation of natural plants and essential raw materials for industry due to increasing soil salinization and decreasing freshwater availability. Sarcocornia fruticosa, a halophytic plant, may hold promise for biosaline production systems and achieve bioactive products. Understanding the salt tolerance mechanisms of halophytes through elicitors can enhance the production of secondary metabolites, such as phenolics and flavonoids, under saline environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!