NaVO (η-NaVO) has been synthesized via solid-state reaction in an evacuated sealed silica ampoule and tested as electroactive material for Na-ion batteries. According to powder X-ray diffraction, electron diffraction and atomic resolution scanning transmission electron microscopy, NaVO adopts a monoclinic structure consisting of layers of corner- and edge-sharing VO tetragonal pyramids and VO tetrahedra with Na cations positioned between the layers, and can be considered as sodium vanadium(IV,V) oxovanadate NaVO(VO). Behavior of NaVO as a positive and negative electrode in Na half-cells was investigated by galvanostatic cycling against metallic Na, synchrotron powder X-ray diffraction and electron energy loss spectroscopy. Being charged to 4.6 V vs. Na/Na, almost 3 Na can be extracted per NaVO formula, resulting in electrochemical capacity of ~60 mAh g. Upon discharge below 1 V, NaVO uptakes sodium up to Na:V = 1:1 ratio that is accompanied by drastic elongation of the separation between the layers of the VO tetrahedra and VO tetragonal pyramids and volume increase of about 31%. Below 0.25 V, the ordered layered NaVO structure transforms into a rock-salt type disordered structure and ultimately into amorphous products of a conversion reaction at 0.1 V. The discharge capacity of 490 mAh g delivered at first cycle due to the conversion reaction fades with the number of charge-discharge cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747075PMC
http://dx.doi.org/10.3390/molecules27010086DOI Listing

Publication Analysis

Top Keywords

material na-ion
8
na-ion batteries
8
powder x-ray
8
x-ray diffraction
8
diffraction electron
8
tetragonal pyramids
8
conversion reaction
8
navo
7
sodium-vanadium bronze
4
bronze navo
4

Similar Publications

Of the few weberite-type Na-ion cathodes explored to date, NaFeF exhibits the best performance, with capacities up to 184 mAh/g and energy densities up to 550 Wh/kg reported for this material. However, the development of robust structure-property relationships for this material is complicated by its tendency to form as a mixture of metastable polymorphs, and transform to a lower-energy Na FeF perovskite compound during electrochemical cycling. Our first-principles-guided exploration of Fe-based weberite solid solutions with redox-inactive Mg and Al predicts an enhanced thermodynamic stability of NaMg Fe F as the Mg content is increased, and the = 0.

View Article and Find Full Text PDF

A new 3D metallic, ductile, and porous boron nitride as a promising anode material for sodium-ion batteries.

Phys Chem Chem Phys

January 2025

Department of Physics, Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA.

We propose a new stable three-dimensional (3D) porous and metallic boron nitride anode material, named h-BN, with good ductility for sodium-ion batteries (SIBs). Based on first-principles calculations and a tight-binding model, we demonstrate that the metallicity originates from the synergistic contribution of the p-orbital of the sp-hybridized B and N atoms, while the ductility is due to the unique configurations of B-B and N-N dimers in the structure. More importantly, this boron nitride allotrope exhibits a high reversible capacity of 582.

View Article and Find Full Text PDF

Li-ion and Na-ion batteries are promising systems for powering electric vehicles and grid storage. Layered 3d transition metal oxides ATMO (A = Li, Na; TM = 3d transition metals; 0 < x ≤ 2) have drawn extensive attention as cathode materials due to their exceptional energy densities. However, they suffer from several technical challenges caused by crystal structure degradation associated with TM ions migration, such as poor cycling stability, inferior rate capability, significant voltage hysteresis, and serious voltage decay.

View Article and Find Full Text PDF

Structural Changes in Semi-Crystalline Ethylene-Based Ionomers During the Heating Process.

Polymers (Basel)

December 2024

Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan.

Article Synopsis
  • The study explored how different ionic groups in ethylene-based ionomers affect their behavior when heated, focusing on carboxylic acid groups neutralized by Zn and Na ions.
  • Differential scanning calorimetry (DSC) showed two endothermic peaks during heating, with the best melting enthalpy occurring at specific Na/Zn ratios, indicating optimal crystallite growth with both ions.
  • X-ray scattering techniques revealed temperature-dependent phase transitions of the crystals, and expansions of ionic aggregates were linked to the melting of polyethylene crystals, highlighting the relationship between ionic composition, microstructure, and thermal properties.
View Article and Find Full Text PDF

Background: The in vitro propagation of halophytes is innovative perspective for sustainable agriculture, conservation of natural plants and essential raw materials for industry due to increasing soil salinization and decreasing freshwater availability. Sarcocornia fruticosa, a halophytic plant, may hold promise for biosaline production systems and achieve bioactive products. Understanding the salt tolerance mechanisms of halophytes through elicitors can enhance the production of secondary metabolites, such as phenolics and flavonoids, under saline environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!