Influencing Activity of Bats by Dimly Lighting Wind Turbine Surfaces with Ultraviolet Light.

Animals (Basel)

U.S. Department of Energy, National Renewable Energy Laboratory, National Wind Technology Center, Boulder, CO 80007, USA.

Published: December 2021

Wind energy producers need deployable devices for wind turbines that prevent bat fatalities. Based on the speculation that bats approach turbines after visually mistaking them for trees, we tested a potential light-based deterrence method. It is likely that the affected bats see ultraviolet (UV) light at low intensities. Here, we present the results of a multi-month experiment to cast dim, flickering UV light across wind turbine surfaces at night. Our objectives were to refine and test a practical system for dimly UV-illuminating turbines while testing whether the experimental UV treatment influenced the activity of bats, birds, and insects. We mounted upward-facing UV light arrays on turbines and used thermal-imaging cameras to quantify the presence and activity of night-flying animals. The results demonstrated that the turbines can be lit to the highest reaches of the blades with "invisible" UV light, and the animal responses to such experimental treatment can be concurrently monitored. The UV treatment did not significantly change nighttime bat, insect, or bird activity at the wind turbine. Our findings show how observing flying animals with thermal cameras at night can help test emerging technologies intended to variably affect their behaviors around wind turbines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744972PMC
http://dx.doi.org/10.3390/ani12010009DOI Listing

Publication Analysis

Top Keywords

wind turbine
12
activity bats
8
turbine surfaces
8
ultraviolet light
8
light wind
8
wind turbines
8
experimental treatment
8
wind
6
turbines
6
light
5

Similar Publications

The depletion of fossil fuel reserves, increasing environmental concerns, and energy demands of remote communities have increased the acceptance of using hybrid renewable energy systems (HRES). However, choosing an optimal HRES from economic, environmental, reliability, and sustainability aspects is still challenging. To solve this challenge, this study introduces a novel multi-objective optimization approach using the Gravitational Search Algorithm (GSA) and non-dominated sorting techniques.

View Article and Find Full Text PDF

Accurate statistical modeling of wind speed variability is crucial for assessing wind energy potential, particularly in regions with low wind speeds and significant calm hours. This study evaluates the Champernowne distribution as a novel model for wind speed analysis, comparing its performance with the two-parameter Weibull, three-parameter Weibull, and Rayleigh-Rice distributions. Wind speed data at 10 m hub height over three years (2021-2023) from Ben Guerir, Morocco, were analyzed using statistical metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Bias Error (MBE), Coefficient of Determination (R2), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC).

View Article and Find Full Text PDF

Inspection of wind turbine bolted connections using the ultrasonic phased array system.

Heliyon

July 2024

Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XQ, UK.

This study explores the inspection of bolted connections in wind turbines, specifically focusing on the application of Phased Array Ultrasonic Testing (PAUT). The research comprises four sections: Acoustoelastic Constant calibration, high tension investigation on bolts, blind tests on larger bolts, and Finite Element Analysis (FEA) verification. The methodology shows accurate results for stress while the bolt is under operative loads, and produces a clear indication of when it is above these loads and beginning to deform.

View Article and Find Full Text PDF

The World Health Organization Environmental Noise Guidelines provide source-based nighttime sound level (Lnight) recommendations. For non-aircraft sources, the recommended Lnight is where the absolute prevalence of high sleep disturbance (HSD) equals 3%. The Guideline Development Group did not provide an Lnight for wind turbines due to inadequate data.

View Article and Find Full Text PDF

This research is dedicated to improving the control system of wind turbines (WT) to ensure optimal efficiency and rapid responsiveness. To achieve this, the fuzzy logic control (FLC) method is implemented to control the converter in the rotor side (RSC) of a doubly fed induction generator (DFIG) and its performance is compared with an optimized proportional integral (PI) controller. The study demonstrated an enhancement in the performance of the DFIG through the utilization of the proposed FLC, effectively overcoming limitations and deficiencies observed in the conventional controllers, this approach significantly improved the performance of the wind turbine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!