Background/aim: Given their widespread use and their notorious effects on the lining of gut cells, including the enteroendocrine cells, we explored if chronic exposure to non-steroidal anti-inflammatory drugs (NSAIDs) affects metabolic balance in a mouse model of NSAID-induced enteropathy.
Method: We administered variable NSAIDs to C57Blk/6J mice through intragastric gavage and measured their energy balance, glucose hemostasis, and GLP-1 levels. We treated them with Exendin-9 and Exendin-4 and ran a euglycemic-hyperinsulinemic clamp.
Results: Chronic administration of multiple NSAIDs to C57Blk/6J mice induces ileal ulcerations and weight loss in animals consuming a high-fat diet. Despite losing weight, NSAID-treated mice exhibit no improvement in their glucose tolerance. Furthermore, glucose-stimulated (glucagon-like peptide -1) GLP-1 is significantly attenuated in the NSAID-treated groups. In addition, Exendin-9-a GLP-1 receptor antagonist-worsens glucose tolerance in the control group but not in the NSAID-treated group. Finally, the hyper-insulinemic euglycemic clamp study shows that endogenous glucose production, total glucose disposal, and their associated insulin levels were similar among an ibuprofen-treated group and its control. Exendin-4, a GLP-1 receptor agonist, reduces insulin levels in the ibuprofen group compared to their controls for the same glucose exchange rates.
Conclusions: Chronic NSAID use can induce small intestinal ulcerations, which can affect intestinal GLP-1 production, hepatic insulin sensitivity, and consequently, hepatic glucose production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746549 | PMC |
http://dx.doi.org/10.3390/nu14010120 | DOI Listing |
Commun Biol
January 2025
Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China.
Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources.
View Article and Find Full Text PDFJPEN J Parenter Enteral Nutr
January 2025
The University of Queensland, Brisbane, Australia.
Background: Advanced glycation end-products (AGEs) can enter patients' circulation through exogenous sources, such as enteral nutrition formulae. Circulating AGEs, specifically carboxymethyllysine, can promote insulin resistance and activation of pro-inflammatory pathways leading to oxidative stress, cell death, and organ failure. Suboptimal kidney function increases the risk of elevated circulating AGEs because levels are controlled through urinary excretion.
View Article and Find Full Text PDFExpert Opin Pharmacother
January 2025
The Association of Diabetes Investigators, Newport Coast, CA, USA.
Introduction: Type 1 diabetes is a unique autoimmune attack on the β cell of the pancreatic islet resulting in progressive destruction of these cells and as a result the ability of the body to maintain insulin production. The consequences of insulin deficiency are very severe, and the disease was fatal prior to the ability to extract insulin from animal pancreas in 1921. We review progress in the treatment of childhood type 1 diabetes over the past 100 years.
View Article and Find Full Text PDFDrugs
January 2025
Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring.
View Article and Find Full Text PDFAnn Med
December 2025
Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Despite surgical and intravesical chemotherapy interventions, non-muscle invasive bladder cancer (NMIBC) poses a high risk of recurrence, which significantly impacts patient survival. Traditional clinical characteristics alone are inadequate for accurately assessing the risk of NMIBC recurrence, necessitating the development of novel predictive tools.
Methods: We analyzed microarray data of NMIBC samples obtained from the ArrayExpress and GEO databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!