A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quorum Sensing Bacteria in the Phycosphere of HAB Microalgae and Their Ecological Functions Related to Cross-Kingdom Interactions. | LitMetric

Quorum Sensing Bacteria in the Phycosphere of HAB Microalgae and Their Ecological Functions Related to Cross-Kingdom Interactions.

Int J Environ Res Public Health

Key Laboratory of Marine Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.

Published: December 2021

It has been proven that the relationship between microalgae and bacteria affects the dynamic process of harmful algal blooms (HABs). Microalgae-associated microorganisms widely exist in the phycosphere and play an essential role in algae-bacteria cross-kingdom interactions. Among these processes, quorum sensing (QS), as a communication system of bacteria, is thought to participate in algae-bacteria interactions. However, the species of QS bacteria in the phycosphere and their ecological function are still unknown. In this study, microalgae-associated microorganisms with a QS system were screened by the biosensor method and identified based on 16S rRNA gene analysis. The types and number of acyl-L-homoserine lactone (AHL) signalling molecules produced by QS bacteria were analysed by thin layer chromatography (TLC) bioautography and gas chromatography-mass spectrometer (GC-MS). The film formation, β-dimethylmercaptopropionic (DMSP) degradation and algae growth effects of QS bacteria were investigated. The results showed that 113 QS bacteria were isolated from 842 microalgae-associated bacteria. Detection of AHL molecules in 10 different species of QS bacteria showed that most of them were -(3-Oxodecanoyl)-L-homoserine lactone (OC10-HSL), -Octanoyl-L-homoserine lactone (C8-HSL) and -(3-Oxooctanoyl)-L-homoserine lactone (OC8-HSL). All 10 QS bacteria had film-forming ability, and they could degrade DMSP (except strain E26). The crude metabolic extracts of the 10 QS bacteria can inhibit or promote microalgae growth to different degrees. Our study is helpful to understand the role of microalgae-associated microorganisms with the QS system in algae-bacteria interactions and community succession of HAB microalgae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750903PMC
http://dx.doi.org/10.3390/ijerph19010163DOI Listing

Publication Analysis

Top Keywords

microalgae-associated microorganisms
12
bacteria
11
quorum sensing
8
bacteria phycosphere
8
hab microalgae
8
cross-kingdom interactions
8
algae-bacteria interactions
8
species bacteria
8
microorganisms system
8
sensing bacteria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!