Salt is one of the most important factors for fermented foods, but the effect of salt treatment time on the quality of fermented foods has rarely been studied. In this study, the effect of different salt treatment times (0, 48, and 96 h) after the start of fermentation on the quality of the soy sauce moromi extract (SSME) was investigated. As the salt treatment time was delayed, the population of , , and in SSME increased, whereas the population of and decreased, leading to changes in the enzymatic activity and metabolite profiles. In particular, the contents of amino acids, peptides, volatile compounds, acidic compounds, sugars, and secondary metabolites were significantly affected by the salt treatment time, resulting in changes in the sensory quality and appearance of SSME. The correlation data showed that metabolites, bacterial population, and sensory parameters had strong positive or negative correlations with each other. Moreover, based on metabolomics analysis, the salt treatment-time-related SSME metabolomic pathway was proposed. Although further studies are needed to elucidate the salt treatment mechanism in fermented foods, our data can be useful to better understand the effect of salt treatment time on the quality of fermented foods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750577PMC
http://dx.doi.org/10.3390/foods11010063DOI Listing

Publication Analysis

Top Keywords

salt treatment
28
treatment time
20
fermented foods
16
soy sauce
8
sauce moromi
8
moromi extract
8
salt
8
time quality
8
quality fermented
8
treatment
7

Similar Publications

Unlabelled: Low-sodium salt has a protective effect on BMD and also reduces the risk of osteopenia due to elevated blood glucose. This provides a direct and effective way to improve bone health in patients with hyperglycemia.

Objective: There is no consensus on the relationship between salt type and bone mineral density (BMD).

View Article and Find Full Text PDF

Na-K-Cl cotransporters functions as an anion importers, regulating trans-epithelial chloride secretion, cell volume, and renal salt reabsorption. Loop diuretics, including furosemide, bumetanide, and torsemide, antagonize both NKCC1 and NKCC2, and are first-line medicines for the treatment of edema and hypertension. NKCC1 activation by the molecular crowding sensing WNK kinases is critical if cells are to combat shrinkage during hypertonic stress; however, how phosphorylation accelerates NKCC1 ion transport remains unclear.

View Article and Find Full Text PDF

A bHLH transcription factor RrUNE12 regulates salt tolerance and promotes ascorbate synthesis.

Plant Cell Rep

January 2025

Engineering Research Center of National Forestry and Grassland Administration for Rosa Roxburghii, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.

RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells.

View Article and Find Full Text PDF

Nocturnal polyuria is a major cause of nocturia, which affects quality of life. Aging-related decreases in nitric oxide production have been reported to contribute to salt-induced nocturnal polyuria. We posited that enhanced nitric oxide production from exercise could mitigate salt-induced nocturnal polyuria.

View Article and Find Full Text PDF

Neuroendocrine neoplasms (NENs) encompass a diverse set of malignancies with limited precision therapy options. Recently, therapies targeting DLL3 have shown clinical efficacy in aggressive NENs, including small cell lung cancers and neuroendocrine prostate cancers. Given the continued development and expansion of DLL3-targeted therapies, we sought to characterize the expression of DLL3 and identify its clinical and molecular correlates across diverse neuroendocrine and non-neuroendocrine cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!