Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The automatic segmentation of the pancreatic cyst lesion (PCL) is essential for the automated diagnosis of pancreatic cyst lesions on endoscopic ultrasonography (EUS) images. In this study, we proposed a deep-learning approach for PCL segmentation on EUS images. We employed the Attention U-Net model for automatic PCL segmentation. The Attention U-Net was compared with the Basic U-Net, Residual U-Net, and U-Net++ models. The Attention U-Net showed a better dice similarity coefficient (DSC) and intersection over union (IoU) scores than the other models on the internal test. Although the Basic U-Net showed a higher DSC and IoU scores on the external test than the Attention U-Net, there was no statistically significant difference. On the internal test of the cross-over study, the Attention U-Net showed the highest DSC and IoU scores. However, there was no significant difference between the Attention U-Net and Residual U-Net or between the Attention U-Net and U-Net++. On the external test of the cross-over study, all models showed no significant difference from each other. To the best of our knowledge, this is the first study implementing segmentation of PCL on EUS images using a deep-learning approach. Our experimental results show that a deep-learning approach can be applied successfully for PCL segmentation on EUS images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749636 | PMC |
http://dx.doi.org/10.3390/s22010245 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!